Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn tìm ảnh của một điểm bất kì nằm trên đường thẳng qua phép tịnh tiến
vd : bn ra là m phẩy thông qua x và y r thay m phẩy vào phương trình cũ là ra
5.
\(y=\dfrac{2x-1}{1-x}\Rightarrow y'=\dfrac{\left(2x-1\right)'\left(1-x\right)-\left(1-x\right)'\left(2x-1\right)}{\left(1-x\right)^2}\)
\(=\dfrac{2\left(1-x\right)+\left(2x-1\right)}{\left(1-x\right)^2}=\dfrac{1}{\left(1-x\right)^2}=\dfrac{1}{\left(x-1\right)^2}\)
9.
\(\lim\limits\dfrac{2n^2+4}{3-n^2}=\lim\dfrac{2+\dfrac{4}{n^2}}{\dfrac{3}{n^2}-1}=\dfrac{2+0}{0-1}=-2\)
\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\2x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)
Nghiệm dương nhỏ nhất là \(x=\dfrac{\pi}{4}\approx0.79\)
Đáp án C
Có: `y=a sinx +b cosx`
`=> -\sqrt(a^2+b^2) <= y <= \sqrt(a^2+b^2)`
- Nhớ sương sương vậy thôi chứ câu từ đầy đủ thế nào thì bạn tự tra mạng nkaaaa.
b) `sin^2 3x=1`
`<=> (1-cos6x)/2=1`
`<=> 1-cos6x=2`
`<=> cos6x=-1`
`<=> 6x=π +k2π`
`<=>x=π/6 +k π/3 ( k \in ZZ)`
c) `tan^2 2x=3`
`<=> (1-cos4x)/(1+cos4x)=3`
`<=> 1-cos4x=3+3cos4x`
`<=>cos4x = -1/2`
`<=>4x= \pm (2π)/3 +k2π`
`<=>x = \pm π/6 + k π/2 (k \in ZZ)`
Câu 2:
SHTQ là: \(C^k_{12}\cdot\left(2x\right)^{12-k}\cdot\left(-\dfrac{1}{x^2}\right)^k=C^k_{12}\cdot\left(-1\right)^k\cdot2^{12-k}\cdot x^{12-3k}\)
Số hạng ko chứa x tương ứng với 12-3k=0
=>k=4
=>Số hạng ko chứa x là \(C^4_{12}\cdot\left(-1\right)^4\cdot2^{12-4}=126720\)