Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu vừa nãy mình làm sai nha
nếu x = 1 thì phép tính đó âm mất rùi
nên là bài này không có kết quả
Vì x^4= x.x.x.x
4x+3=x.4+3
=>x^4>4x+3
=>x^4-4x+3>0
=>x^4-4x+3 không âm với mọi x
ta có:\(x^3+x^2+2x^2+2x+2x+2=0\)0
\(\Leftrightarrow x^2\left(x+1\right)+2x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^2+2x+2\right)\left(x+1\right)=0\)
Do \(x^2+2x+2\ne0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
vậy phương trình trên có tập nghiệm là :S=(-1)
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x^2-2x}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x^2-2x\)
\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)
Cho mình sửa lại nhé:
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
\(\left(X^2+2x+1\right)+\left(4y^2+\frac{4.1y}{4}+\frac{1}{16}\right)+2-\frac{1}{16}.\)
\(\left(x+1\right)^2+\left(2y+\frac{1}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)
\(x^2+4y^2+2x-y+2\)
\(=\left(x^2+2x+1\right)+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{15}{16}\)
\(=\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(2y-\frac{1}{4}\right)\ge0\forall y\end{cases}\Rightarrow\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\ge\frac{15}{16}}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(2y-\frac{1}{4}\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}}\)
Vậy GTNN của \(x^2+4y^2+2x-y+2=\frac{15}{16}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}\)
Tham khảo nhé~
từ trên ta có (x+2)/13+(2x+45)/15-(3x+8)/37-(4x+69)/9=0
(x+2)/13+1+(2x+45)/15-1-(3x+8)/37-1-(4x+69)/9+1=0
(x+15)/13+(2x+30)/15-((3x+8)/37+1)-((4x+69)/9-1)=0
(x+15)/13+2(x+15)/15-3(x+15)/37-4(x+15)/9=0
(x+15)(1/13+2/15-3/37-4/9)=0
suy ra x+15=0
x=-15
\(\frac{x+2}{13}+\frac{2x+45}{15}=\frac{3x+8}{37}+\frac{4x+69}{9}\)
<=> \(\left(\frac{x+2}{13}+1\right)+\left(\frac{2x+45}{15}-1\right)=\left(\frac{3x+8}{37}+1\right)+\left(\frac{4x+69}{9}-1\right)\)
<=> \(\frac{x+2+13}{13}+\frac{2x+45-15}{15}=\frac{3x+8+37}{37}+\frac{4x+69-9}{9}\)
<=> \(\frac{x+15}{13}+\frac{2\left(x+15\right)}{13}=\frac{3\left(x+15\right)}{37}+\frac{4\left(x+15\right)}{9}\)
<=> \(\frac{x+15}{13}+\frac{2\left(x+15\right)}{13}-\frac{3\left(x+15\right)}{37}-\frac{4\left(x+15\right)}{9}=0\)
<=> \(\left(x+15\right)\left(\frac{1}{13}+\frac{2}{13}-\frac{3}{37}-\frac{4}{9}\right)=0\)
Vì \(\frac{1}{13}+\frac{2}{13}-\frac{3}{37}-\frac{4}{9}\ne0\)
<=> x + 15 = 0
<=> x = -15
2x+1/x+1 = 5(x-1)/x-1
<=>(2x+1)(x-1)/(x+1)(x-1)=5(x-1)(x+1)
<=>2x2-2x+x-1=5(x2-1)
<=>2x2-x-1=5x2-5 <=>2x2-5x2-x-1+5 =0<=>-3x2-x+4=0
<=>-3x2+3x-4x+4=0 <=>-3x(x-1)-4(x-1)=0 <=> (x-1)(-3x-4)=0
<=>x-1=0 hoặc -3x-4=0
<=>x=1 hoặc x= -4/3 Vậy S={1;-4/3}
\(\Delta=4+4.7=32\)
\(\orbr{\begin{cases}x_1=\frac{-2+4\sqrt{2}}{2}=-1+2\sqrt{2}\\x_2=\frac{-2-4\sqrt{2}}{2}=-1-2\sqrt{2}\end{cases}}\)