Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\sqrt{371^2}+2\sqrt{31^2}-\sqrt{121^2}=371+2.31-121=371+62-121=312\)
Bài 2:
a: \(\Leftrightarrow4x^2=9\)
=>(2x-3)(2x+3)=0
hay \(x\in\left\{\dfrac{3}{2};-\dfrac{3}{2}\right\}\)
b: \(\Leftrightarrow4x^2-4x+1-4x^2+12x-x+3=-3\)
\(\Leftrightarrow7x+4=-3\)
hay x=-1
Bài 3:
x=2013
nên x+1=2014
\(A=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+2014\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+2014\)
=2014-x
=2014-2013=1
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
bài 32 đề kiểu j z bạn, bài 29 mình đang nghiên cứu, hóc búa phết dấy :V
thế này nhé, hơi dài với khó hiểu
lấy n là trung điểm bh
cậu tự cm mn là đường tb tam giác ahb
=> mn// và = 1/2 ab
mà abcd là hình chữ nhật => ab// và = cd
từ 2 điều đó => mn // và = ck
=> mnck là hình bình hành
=> cn // mk (1)
vì mn // ab mà ab vuông góc bc
=> mn vuông góc bc
tam giác bmc có mn vuông góc bc và bh vuông góc mc, 2 đường này giao tại n
=> n là trực tâm (2)
từ (1) và (2) =? mk vuông góc với bk
=> tam giác bkm vuông tại m
=> bm^2 + mk^2 = bk^2 (3)
abcd là hcn => góc c = 90 độ
=> tam giác bkc vuông c
=> bc^2 + ck^2 = bk ^2 (4)
từ (3) và (4)
=> bm^2 + mk^2 = bc^2 + ck^2 (= bk^2) (5)
=> mà ck = cd/2 (6)
từ (5) và (6) => ĐPCM
cái => ĐPCM ấy nhiều trường không cho nên cũng có thể thay = cái yêu cầu của đề bài nhá, bạn còn bài nào khó như z không, cho mình xin :)
a) \(\sqrt{169}=13\) và \(\sqrt{196}=14\)
bài 3 :
a) \(A=\frac{\sqrt{72}}{\sqrt{2}}+2\frac{\sqrt{27}}{\sqrt{3}}-3\frac{\sqrt{28}}{\sqrt{63}}=\frac{22}{3}\)tương tự
a/ 12x^2+4x/9x^2-1
=4x(3x+1)/(3x)^2-1
=4x(3x+1)/(3x-1)(3x+1)
bạn rút gọn 3x+1 vs 3x-1 vậy kết quả là 4x/3x
A B C I D
B. xét tgiac ADB và tgiac ACI có:
góc BAD= góc IAC(gt)
góc BDA= góc ACI(gt)
vậy tgiac ADB đồng dạng với tgiac ACI(g.g) => Góc ABD= góc CID
ta có tỉ số sau:\(\frac{AD}{AC}\)=\(\frac{AB}{AI}\)=> AB.AC=AD.AI(1)
Xét tgiacADB và tgiac CID có:
góc ADB= góc CDI(đôi đỉnh)
góc ABD= góc CID(cmt)
vậy tgiac ADB đồng dạng với tgiac CID(g.g)
Nên ta có tỉ số sau:\(\frac{BD}{DI}\)=\(\frac{AD}{CD}\)=>BD.CD=AD.DI(2)
Từ (1) và(2) ta có:
AB.AC-BD.CD=AD.AI-AD.DI=AD.(AI-DI)=AD.AD=\(AD^2\)
Vậy\(AD^2\)=AB.AC-BD.CD
ABCID
B. xét tam giác ADB và tgiac ACI có:
góc BAD= góc IAC (gt)
góc BDA= góc ACI (gt)
vậy tam giác ADB đồng dạng với tgiac ACI(g.g) => Góc ABD= góc CID
ta có tỉ số sau:AD/AC=AB/AI=> AB.AC=AD.AI(1)
Xét tam giácADB và tgiac CID có:
góc ADB= góc CDI (đôi đỉnh)
góc ABD= góc CID (cmt)
vậy tgiac ADB đồng dạng với tam giác CID(g.g)
Nên ta có tỉ số sau:BD/DI=AD/CD=>BD.CD=AD.DI(2)
Từ (1) và(2) ta có:
AB.AC-BD.CD=AD.AI-AD.DI=AD.(AI-DI)=AD.AD=AD2
VậyAD2=AB.AC-BD.CD
a)\(A=\frac{x^3-2x^2+x}{x^3-x}=\frac{x\left(x^2-2x+1\right)}{x\left(x^2-1\right)}=\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{x-1}{x+1}\)
ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
b) \(\frac{x-1}{x+1}=\frac{x+1-2}{x+1}=1-\frac{2}{x+1}\)
Để A đạt giá trị nguyên => \(\frac{2}{x+1}\)đạt giá trị nguyên
=> 2 ⋮ x + 1
=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }
So với ĐKXĐ ta thấy x = 0 ; x = -2 ; x = -3 thỏa mãn
Vậy x ∈ { -3 ; -2 ; 0 } thì A đạt giá trị nguyên
c) Tại x = -1/3 ( tm ) => A = \(\frac{-\frac{1}{3}-1}{-\frac{1}{3}+1}=-2\)