Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a: Xét tứ giác BFGE có
BF//GE
BE//FG
=>BFGE là hbh
=>GE=BF
=>GE=AF
mà GE//AF
nên AGEF là hình bình hành
b: Xét ΔCAB cso CD/CB=CE/CA
nên DE//AB
=>D,E,G thẳng hàng
DE//AB
=>DE/AB=CD/CB=1/2
=>DE=AF=GE
=>E là trung điểm của DG
Xét tứ giác ADCG có
E là trung điểm chung của AC và DG
=>ADCG là hbh
=>CG=AD
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
B) Theo giả thiết ta có BC song song với DE vậy : BK song song với IE
Suy ra : \(\widehat{BKM}\)= \(\widehat{EIM}\) ( góc sole trong)
\(\widehat{CBE}\) = \(\widehat{BED}\) ( hai góc sole trong)
từ hai điều trên ta suy ra : \(\widehat{EMD}\)= \(\widehat{BMC}\)
mà hai góc này lại lằm ở vị trí đối đỉnh của tam giác BKM và EMI suy ra : KMI thẳng hàng
mà ta lại có theo giả thiết AKI thẳng hàng suy ra : A,I,M,K thẳng hàng
Mik thấy mik trình bày vẫn chưa đc lắm mong cậu hiểu cho ^_^ chúc bạn hok giỏi
a: Xét ΔAFH vuông tại F và ΔADB vuông tại Dcó
góc FAH chung
Do đo: ΔAFH đồng dạng với ΔADB
b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
Do đo: ΔHFB đồng dạng với ΔHEC
Suy ra: HF/HE=HB/HC
hay \(HF\cdot HC=HB\cdot HE\)
c: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
Do đó: ΔBAE đồg dạg với ΔCAF
Suy ra: AE/AF=AB/AC
hay AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC
a: Xét ΔCBA có
D,E lần lượt là trung điểm của CB,CA
=>DE là đường trung bình
=>DE//AB và DE=1/2AB=AF
b: DE//AB
mà I thuộc tia đối của tia DE
nên DI//AB
=>DI//AF
Xét tứ giác AFID có
AF//ID
AD//FI
Do đó: AFID là hình bình hành
=>DI=AF=DE
=>D là trung điểm của EI