Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\\ b,A=\dfrac{2\left(\sqrt{x}+1\right)-3}{\sqrt{x}+1}=2-\dfrac{3}{\sqrt{x}+1}\in Z\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(3\right)=\left\{1;3\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}\in\left\{0;2\right\}\\ \Leftrightarrow x\in\left\{0;4\right\}\left(tm\right)\)
a) \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)
\(\Rightarrow A=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{\left(2x-2\sqrt{x}\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
Bài 4:
\(a,\sqrt{64.\left(x-1\right)^2}=16\\ \Leftrightarrow8\sqrt{\left(x-1\right)^2}=16\\ \\ \Leftrightarrow\sqrt{\left(x-1\right)^2}=\dfrac{16}{8}=2\\ \left|x-1\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\\ b,\sqrt{4\left(x-2\right)}=8\\ \Leftrightarrow2\sqrt{x-2}=8\\ \Leftrightarrow\sqrt{x-2}=\dfrac{8}{2}=4\\ \Leftrightarrow x-2=4^2=16\\ \Leftrightarrow x=16+2=18\\ c,\dfrac{\sqrt{2x}}{\sqrt{8}}=5\\ \Leftrightarrow\dfrac{\sqrt{2}\sqrt{x}}{2\sqrt{2}}=5\\ \Leftrightarrow\dfrac{\sqrt{x}}{2}=5\\ \Leftrightarrow\sqrt{x}=5.2=10\\ \Leftrightarrow x=10^2=100\)
Bài 2:
\(a,\left(\sqrt{75}-2\sqrt{12}-\sqrt{27}\right).\sqrt{3}\\ =\left(\sqrt{3.5^2}-2.\sqrt{3.2^2}-\sqrt{3.3^2}\right).\sqrt{3}\\ =\left(5\sqrt{3}-2.2\sqrt{3}-3\sqrt{3}\right).\sqrt{3}\\ =-2\sqrt{3}.\sqrt{3}=-2.3=-6\\ b,\left(5\sqrt{2}-\sqrt{8}-\sqrt{98}\right):\sqrt{2}\\ =\left(5\sqrt{2}-\sqrt{2^2.2}-\sqrt{2.7^2}\right):\sqrt{2}\\ =\left(5\sqrt{2}-2\sqrt{2}-7\sqrt{2}\right):\sqrt{2}\\ =-4\sqrt{2}:\sqrt{2}=-4\)
\(c,\\ \dfrac{\sqrt{18}}{\sqrt{2}}=\sqrt{\dfrac{18}{2}}=\sqrt{9}=\sqrt{3^2}=3\\ d,\\ \sqrt{\dfrac{45}{7}}.\sqrt{\dfrac{28}{5}}=\sqrt{\dfrac{45.28}{7.5}}=\sqrt{\dfrac{9.5.4.7}{7.5}}=\sqrt{9.4}=\sqrt{36}=\sqrt{6^2}=6\)
\(\sqrt{x^2+2x+2}+\sqrt{x^2+4x+8}=\sqrt{10}\)
\(\Leftrightarrow\sqrt{x^2+4x+8}=\sqrt{10}-\sqrt{x^2+2x+2}\)
\(\Rightarrow\left(\sqrt{x^2+4x+8}\right)^2=\left(\sqrt{10}-\sqrt{x^2+2x+2}\right)^2\)
\(\Leftrightarrow x^2+4x+8=2\sqrt{10\left(x^2+2x+2\right)}+x^2+2x+12\)
\(\Leftrightarrow2x-4=2\sqrt{10\left(x^2+2x+2\right)}\Leftrightarrow x-2=\sqrt{10x^2+20x+20}\)
\(\Rightarrow\left(x-2\right)^2=\left(\sqrt{10x^2+20x+20}\right)^2\Leftrightarrow x^2-4x+4=10x^2+20x+20\)
\(\Leftrightarrow9x^2+24x+16=0\Leftrightarrow\left(3x+4\right)^2=0\Leftrightarrow3x+4=0\Leftrightarrow x=-\frac{4}{3}\)
Thử lại thấy x=-4/3 thỏa mãn là nghiệm của pt
Ta thấy \(y^2+2xy+x^2-x^2-7x+12=0\)
\(\Leftrightarrow\left(x+y\right)^2=x^2+7x+12\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+3\right)\left(x+4\right)\)(1)
Vì\(x,y\varepsilonℤ\)nên\(\left(x+y\right)^2\)là số chính phương và \(\left(x+3\right)\left(x+4\right)\)là tích 2 số nguyên liên tiếp (2)
Từ (1) và (2) ta được
\(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x+3\right)\left(x+4\right)=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=0\\\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\end{cases}}\)
Giải ra tìm được x,y
\(\hept{\begin{cases}\left(x+y\right)^2=0\\\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\end{cases}}\)
a: Ta có: \(A=\dfrac{2x-3\sqrt{x}-14}{x-7\sqrt{x}+12}-\dfrac{\sqrt{x}+4}{\sqrt{x}-3}-\dfrac{\sqrt{x}-1}{\sqrt{x}-4}\)
\(=\dfrac{2x-3\sqrt{x}-14-x+16-x+4\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)}\)
Ta có: \(B=\dfrac{x-2\sqrt{x}+1}{x-4\sqrt{x}+3}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\)
b: Ta có: M=A:B
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
\(=\dfrac{1}{\sqrt{x}-4}\)
7:
a: ĐKXĐ: x>=0; x<>1
\(D=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}-\dfrac{1}{2\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{-1}{\sqrt{x}+1}\)
b: Khi x=4/9 thì \(D=\dfrac{-1}{\dfrac{2}{3}+1}=-1:\dfrac{5}{3}=-\dfrac{3}{5}\)
c: |D|=1/3
=>D=-1/3 hoặc D=1/3
=>\(\left[{}\begin{matrix}\dfrac{-1}{\sqrt{x}+1}=\dfrac{-1}{3}\\\dfrac{-1}{\sqrt{x}+1}=\dfrac{1}{3}\left(loại\right)\end{matrix}\right.\)
=>\(\sqrt{x}+1=3\)
=>\(\sqrt{x}=2\)
=>x=4
6:
a: \(C=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}-x+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\cdot\dfrac{-\sqrt{x}\left(3-\sqrt{x}\right)}{2\sqrt{x}+4}\)
\(=\dfrac{3\left(\sqrt{x}+3\right)}{3+\sqrt{x}}\cdot\dfrac{-\sqrt{x}}{2\sqrt{x}+4}=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)
b: C<-1
=>C+1<0
=>\(\dfrac{-3\sqrt{x}+2\sqrt{x}+4}{2\sqrt{x}+4}< 0\)
=>\(-\sqrt{x}+4< 0\)
=>\(-\sqrt{x}< -4\)
=>\(\sqrt{x}>4\)
=>x>16
\(C=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\\ =\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\dfrac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{1}{\sqrt{x}}\right)\\ =\left(\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\dfrac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\dfrac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\\ =\dfrac{3\sqrt{x}-x+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\cdot\dfrac{-\sqrt{x}\left(3-\sqrt{x}\right)}{2\sqrt{x}+4}\\ =\dfrac{3\left(\sqrt{x}+3\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\cdot\dfrac{-\sqrt{x}\left(3-\sqrt{x}\right)}{2\sqrt{x}+4}\\ =\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)
Để `C < -1` Ta có :
\(\dfrac{-3}{2\sqrt{x}+4}< -1\\ \Leftrightarrow\dfrac{-3}{2\sqrt{x}+4}+1< 0\\ \Leftrightarrow\dfrac{-3}{2\sqrt{x}+4}+\dfrac{2\sqrt{x}+4}{2\sqrt{x}+4}< 0\\ \Leftrightarrow-3+2\sqrt{x}+4< 0\\ \Leftrightarrow2\sqrt{x}+1< 0\\ \Leftrightarrow2\sqrt{x}< -1\\ \Leftrightarrow\sqrt{x}< -\dfrac{1}{2}\\ \Leftrightarrow x< \dfrac{1}{4}\)