K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

Ta có \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Áp dụng bđt Cauchy, ta có : \(a+b\ge2\sqrt{ab}\) ; \(b+c\ge2\sqrt{bc}\)\(c+a\ge2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge8\)

Vậy \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge8\)(đpcm)

Đề của bạn chưa đúng nhé :)

2 tháng 10 2016

viết nhầm đề @@

15 tháng 8 2019

\(\frac{1}{a}-1=\frac{a+b+c}{a}-\frac{a}{a}=\frac{b+c}{a}\)

Tương tự : \(\frac{1}{b}-1=\frac{c+a}{b};\frac{1}{c}-1=\frac{a+b}{c}\)

Nhân theo vế ta đc :

\(VT=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Áp dụng bđt Cauchy :

\(VT\ge\frac{8abc}{abc}=8\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

8 tháng 7 2019

Từ \(a+b+c=1\) thế vào biểu thức sau

\(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)=\left(\frac{a+b+c}{a}-\frac{a}{a}\right)\left(\frac{a+b+c}{b}-\frac{b}{b}\right)\left(\frac{a+b+c}{c}-\frac{c}{c}\right)\)

\(=\frac{b+c}{a}.\frac{a+c}{b}.\frac{a+b}{c}=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)(1)

Với a,b,c>0 , Áp dụng bất đẳng thức AM-GM (cauchy) cho hai số không âm ta có:

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};a+c\ge2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\)(2)

Từ (1) và (2) suy ra \(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)\ge\frac{8abc}{abc}=8\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}\Leftrightarrow}a=b=c=\frac{1}{3}\)

8 tháng 7 2019

mình wên nữa: đừng ti ck cho câu trả lời này nhé

17 tháng 8 2019

Dat \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

Ta co: \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge8\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Ta d̃i CM:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Ta co:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\left(dpcm\right)\)

Dau '=' xay ra khi \(a=b=c\)

29 tháng 7 2016

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

31 tháng 3 2018

cm \(P\ge\frac{3}{4}\)nhé mn