K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 12 2021

Do d' là ảnh của d qua phép tịnh tiến nên d' cùng phương d

\(\Rightarrow\) Phương trình d' có dạng: \(2x-3y+c=0\)

Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d

\(T_{\overrightarrow{v}}\left(A\right)=A'\Rightarrow\left\{{}\begin{matrix}x'=0+1=1\\y'=1+\left(-2\right)=-1\end{matrix}\right.\) \(\Rightarrow A'\left(1;-1\right)\)

Thay tọa độ A' vào pt d':

\(2.1-3.\left(-1\right)+c=0\Rightarrow c=-5\)

Hay pt d' có dạng: \(2x-3y-5=0\)

12 tháng 5 2021

chụp rõ hơn được k bạn

12 tháng 5 2021

đề dưới 

1b

2c

3d

4a

5a

6b

7a

8d

9b

10b

 

NV
10 tháng 5 2021

\(f'\left(x\right)=2x^2-x\)

\(f'\left(x\right)\ge0\Leftrightarrow2x^2-x\ge0\)

\(\Leftrightarrow x\left(2x-1\right)\ge0\Rightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le0\end{matrix}\right.\)

NV
13 tháng 12 2021

1.

a. \(A_{10}^5-A_9^4\)

b. \(9.10.10.10.5\)

c. \(5.8.8.7.6\)

2.

Chọn 2 chữ số còn lại bất kì: \(C_7^2\) cách

Chọn 2 chữ số còn lại và có mặt số 0: \(C_6^1\) cách

Hoán vị 5 chữ số: \(5!\) cách

Hoán vị 5 chữ số sao cho số 0 đứng đầu: \(4!\) cách

Số số thỏa mãn: \(C_7^2.5!-C_6^1.4!\) số

NV
13 tháng 12 2021

3.

a.

Gọi số đó là \(\overline{abc}\) 

TH1: \(a=\left\{1;2;3\right\}\) có 3 cách

\(\Rightarrow\) Bộ bc có \(A_9^2\) cách chọn

\(\Rightarrow3.A_9^2\) số

TH2: \(a=4\)

- Nếu \(b=7\Rightarrow\) c có 4 cách chọn từ {0;1;2;3}

- Nếu \(b< 7\Rightarrow b\) có 6 cách chọn, c có 8 cách chọn

\(\Rightarrow4+6.8=52\) số

Vậy tổng cộng có: \(3.A_9^2+52\) số

c.

TH1: \(a=\left\{1;3\right\}\) có 2 cách

\(\Rightarrow c\) có 3 cách chọn (từ 5;7;9), b có 8 cách chọn

\(\Rightarrow2.3.8=48\) số

TH2: \(a=2\Rightarrow c\) có 5 cách chọn, b có 8 cách chọn

\(\Rightarrow5.8=40\) số

TH3: \(a=4\)

- Nếu \(b=7\Rightarrow c\) có 2 cách chọn (từ 1;3)

- Nếu \(b=\left\{0;2;6\right\}\) (3 cách) \(\Rightarrow c\) có 5 cách chọn 

- Nếu \(b=\left\{1;3;5\right\}\) (3 cách) \(\Rightarrow c\) có 4 cách

\(\Rightarrow2+3.5+3.4=29\) số

Tổng cộng có: \(48+40+29=...\) số

 

21 tháng 11 2021

Câu 9: a,  Gọi số cần lập là \(\overline{abc}\)

+ a có 5 cách chọn.

+ b có 4 cách chọn. 

+ c có 4 cách chọn.

Vậy ta có: 5.4.4 = 80 số.

Câu b,c mình thấy chắc thiều đề hay sao đó.

21 tháng 11 2021

Câu 10: a, Gọi số cần lập là: \(\overline{abcd}\) (a ≠0)

Ta có: - a có 6 cách chọn.

          - b có 6 cách chọn.

          - c có 5 cách chọn.

          - d có 4 cách chọn.

* Các thao tác thực hiện liên tiếp nên ta có: 6.6.5.4 = 720 số.

b, Gọi số cần lập là: \(\overline{abcd}\) (a ≠0)

Vì là số lẻ nên d phải là các số 1,5,7,9 .

=> d có 4 cách chọn.

+ a có 5 cách chọn.

+ b có 5 cách chọn.

+ c có 4 cách chọn.

* Các thao tác thực hiện liên tiếp nên ta có: 4.4.5.5= 400 số.