Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nửa chu vi mảnh đất: \(\dfrac{320}{2}=160\left(m\right)\)
Gọi chiều dài mảnh đất là x(m) với x>0
Chiều rộng mảnh đất là: \(160-x\) (m)
Hai lần chiều dài mảnh đất là: \(2x\) (m)
Ba lần chiều rộng là: \(3\left(160-x\right)\) (m)
Do hai lần chiều dài hơn 3 lần chiều rộng là 20m nên ta có pt:
\(2x-3\left(160-x\right)=20\)
\(\Leftrightarrow5x=500\)
\(\Rightarrow x=100\left(m\right)\)
Vậy mảnh đất dài 100m, rộng \(160-100=60\left(m\right)\)
nửa chu vi: 100/2 = 50 m
Gọi chiều rộng của mảnh vườn là x(m)(x>0)
=>chiều dài mảnh vườn là 50-x(m)
Diện tích mảnh vườn ban đầu là x(50-x)
chiều rộng khi tăng là x+3(m)
chiều dài khi giảm là 50-x-4=46-x(m)
Diện tích mới của mảnh vườn là:(x+3).(46-x)( m 2 )
Vì diện tích mới của mảnh vườn giảm 2m vuông nên ta có pt: (x+3)(46-x)=x(50-x)-2
Giải pt trên ta được x=20(TMĐK)
Vậy diện tích mảnh vườn là :20(50-20)=600( m 2 )
Gọi chiều rộng,chiều dài của thửa ruộng ban đầu lần lượt là x,y(m,0<x<y)
Nửa chu vi thửa ruộng là: 100:2=50(m)
=>x+y=50(1)
Diện tích của thửa ruộng ban đầu là :xy(m2)
Theo bài ra:
Chiều rộng thửa ruộng sau khi tăng thêm là: x+3(m)
Chiều dài thửa ruộng sau khi giảm là: y-4(m)
Diện tích vườn giảm 2m2
=> (x+3)(y-4)=xy-2(2)
Từ (1) và (2) ta có hpt:
\(\left\{{}\begin{matrix}x+y=50\\\left(x+3\right)\left(y-4\right)=xy-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\xy-4x+3y-12=xy-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\-4x+3y=xy-2-xy+12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\-4x+3y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=150\\-4x+3y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=140\\x+y=50\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=30\end{matrix}\right.\)(TMĐK)
Vậy chiều dài ban đầu của thửa ruộng là 30m
chiều rộng ban đầu của thửa ruộng là 20m
Gọi chiều dài, chiều rộng mảnh đất lần lượt là: `x;y (m)`
`ĐK: y > x; x,y > 0;y > 6`
Theo bài ra ta có hệ ptr:
`{(y-x=6),(x^2+y^2=5.2.(x+y)):}`
`<=>{(x-y=-6<=>x=y-6),(x^2+y^2-10x-10y=0):}`
`<=>(y-6)^2+y^2-10(y-6)-10y=0`
`<=>y^2-12y+36+y^2-10y+60-10y=0`
`<=>2y^2-32y+96=0`
`<=>[(y=12(t//m)),(y=4(ko t//m)):}`
`=>x=12-6=6`
Vậy `CD=12 m ; CR=6 m`
bạn ơi, đã gọi chiều dài là x và chiều rộng là y thì sao suy y - x = 6 được??
Nửa chu vi hình chữ nhật là
400:2=200( m)
Chiều dài là
(200+60):2=130( m)
Chiều rộng là
200-130=70( m)
Đáp số...............................
Này cậu :)))))
Gọi chiều dài ban đầu của mảnh đất là x ( m ) và chiều rộng của mảnh đát là y ( m )
( 40 < x < 80 ; 0 < y < 40 )
Chi vi là 160 nên ta có phương trình: x + y = 160 : 2 ( 1 )
Nếu tăng chiều rộng thêm 10 m và giảm chiều dài đi 10 m thì diện tích mảnh đất tăng thêm 100^2 nên ta có phương trình: \(\left(x-10\right)\left(y+10\right)=xy+100\) ( 2 )
Từ ( 1 ) và ( 2 ) ta có hệ phương trình:
\(\hept{\begin{cases}x+y=80\\\left(x-10\right)\left(y+10\right)=xy+100\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=50\\y=30\end{cases}}\) ( giải hệ tự giải lấy )
Vậy ............... P/s nếu vẫn chưa biết cách giải hệ thì ib tớ riêng tớ chỉ cho nha :P
Gọi chiều rộng là x
=>Chiều dài là x+13
Theo đề, ta có: x(x+13)=140
=>x^2+13x-140=0
=>(x+20)(x-7)=0
=>x-7=0
=>x=7
=>Chiều dài là 20m
Gọi chiều rộng là x
Chiều dài là 60-x
Theo đề, ta có: (63-x)(x+5)=x(60-x)+265
\(\Leftrightarrow63x+315-x^2-5x=60x-x^2+265\)
=>58x+315=60x+265
=>-2x=-50
=>x=25
Vậy: Chiều rộng là 25m
Chiều dài là 35m
Lời giải:
Gọi chiều rộng hình chữ nhật là $a$ m thì chiều dài là $a+6$ m
Bình phương độ dài đường chéo: $a^2+(a+6)^2$ theo định lý Pitago
Theo bài ra ta có:
$a^2+(a+6)^2=10(a+a+6)$
$\Leftrightarrow 2a^2+12a+36=20a+60$
$\Leftrightarrow a^2-4a-12=0$
$\Leftrightarrow (a-6)(a+2)=0$
Vì $a>0$ nên $a=6$
Diện tích hình chữ nhật: $a(a+6)=6.12=72$ (m2)
Nửa chu vi mảnh đất: 50m
Gọi chiều dài mảnh đất là x (m) và chiều rộng mảnh đất là y(m) với x;y>0
Do nửa chu vi mảnh đất là 50 nên: \(x+y=50\)
Do chiều dài hơn chiều rộng 30m nên: \(x-y=30\)
Ta được hệ: \(\left\{{}\begin{matrix}x+y=50\\x-y=30\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=40\\y=10\end{matrix}\right.\)