Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là bài bạn phải nộp cho thầy nên mình sẽ không làm chi tiết. Nhưng mình có thể gợi ý cho bạn như sau:
1.
Đối với tỉ lệ thức đã cho, mỗi phân số ta nhân cả tử và mẫu với 4, 3, 2. Khi đó, ta thu được 1 tỉ lệ thức mới
Dùng tỉ lệ thức trên, áp dụng tính chất dãy tỉ số bằng nhau (cộng), ta thu được $12x=8y=6z(*)$
Tiếp tục áp dụng tính chất dãy tỉ số bằng nhau cho $(*)$ dựa theo điều kiện $x+y+z=18$ ta sẽ tính được $x,y,z$ thỏa mãn.
2.
Áp dụng tính chất dãy tỉ số bằng nhau (cộng) cho 3 phân số đầu tiên, ta sẽ tìm được tổng $x+y+z$
Khi tìm được tổng $x+y+z$, cộng vào 3 phân số đầu tiên trong bài, mỗi phân số cộng thêm 1. Khi đó, ta thu được tỉ lệ thức $\frac{m}{x}=\frac{n}{y}=\frac{p}{z}(*)$ với $m,n,p$ đã tính được dựa theo giá trị $x+y+z$.
Áp dụng tính chất dãy tỉ số bằng nhau cho tỉ lệ thức $(*)$, kết hợp với kết quả $x+y+z$ thì bài toán đã rất quen thuộc rồi.
`a, M(x)+N(x)=(3x^2+5x-x^3+4)+(x^3-5+4x^2+6x)`
`M(x)+N(x)= 3x^2+5x-x^3+4+x^3-5+4x^2+6x`
`M(x)+N(x)= (3x^2+4x^2)+(5x+6x)-(x^3-x^3)+(4-5)`
`M(x)+N(x)= 7x^2+11x-1`
`b, M(x)-N(x)=(3x^2+5x-x^3+4)-(x^3-5+4x^2+6x)`
`M(x)-N(x)= 3x^2+5x-x^3+4-x^3+5-4x^2-6x`
`M(x)-N(x)=(-x^3-x^3)+(3x^2-4x^2)+(5x-6x)-(x^3+x^3)+(4+5)`
`M(x)-N(x)= -2x^3-x^2-x+9`
Lời giải:
a.
$M(x)+N(x)=(3x^2+5x-x^3+4)+(x^3-5+4x^2+6x)$
$=3x^2+5x-x^3+4+x^3-5+4x^2+6x$
$=(-x^3+x^3)+(3x^2+4x^2)+(5x+6x)+(4-5)$
$=7x^2+11x-1$
b.
$M(x)-N(x)=(3x^2+5x-x^3+4)-(x^3-5+4x^2+6x)$
$=3x^2+5x-x^3+4-x^3+5-4x^2-6x$
$=(-x^3-x^3)+(3x^2-4x^2)+(5x-6x)+(4+5)$
$=-2x^3-x^2-x+9$
Bài 2:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{a+2b}{5+2\cdot2}=\dfrac{18}{9}=2\)
Do đó: a=10;b=4
Ta có:
\(\left(2021a+b+1\right)+\left(2019a-b+4\right)=4040a+5\) luôn là 1 số lẻ
\(\Rightarrow\) Trong 2 số \(2021a+b+1\) và \(2019a-b+4\) luôn có 1 số chẵn và 1 số lẻ
\(\Rightarrow A=\left(2021a+b+1\right)\left(2019a-b+4\right)\) là tích của 1 số chẵn và 1 số lẻ nên luôn là 1 số chẵn
Bài 3:
a: \(Q=A\cdot B\)
\(=\dfrac{-2}{5}x^3yz^2\cdot\dfrac{1}{2}\cdot x^2y^3z\)
\(=\left(-\dfrac{2}{5}\cdot\dfrac{1}{2}\right)\cdot\left(x^3\cdot x^2\right)\cdot\left(y\cdot y^3\right)\left(z^2\cdot z\right)\)
\(=\dfrac{-1}{5}\cdot x^5y^4z^3\)
b: \(Q=\dfrac{-1}{5}x^5y^4z^3\)
Hệ số là \(-\dfrac{1}{5}\)
Phần biến là \(x^5;y^4;z^3\)
bậc là 5+4+3=12
Bài 1:
Thay x=1/2 và y=-1 vào \(M=3xy^3+\dfrac{1}{2}-2xy^2\), ta được:
\(M=3\cdot\dfrac{1}{2}\cdot\left(-1\right)^3+\dfrac{1}{2}-2\cdot\dfrac{1}{2}\cdot\left(-1\right)^2\)
\(=-\dfrac{3}{2}+\dfrac{1}{2}-1\)
=-1-1
=-2