Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cos\alpha=\frac{1}{2}\Leftrightarrow\alpha=\frac{-\pi}{3}\)(vì \(\frac{-\pi}{2}< \alpha< 0\))
\(cot\left(\frac{\pi}{3}-\alpha\right)=cot\left(\frac{2\pi}{3}\right)=\frac{-\sqrt{3}}{3}\)
Mình trình bày cho dễ hiểu nha
\(sina-\sqrt{3}cosa\)
\(=2\cdot\left(\frac{1}{2}sina-\frac{\sqrt{3}}{2}cosa\right)\)
\(=2\cdot\left(sinacos\frac{pi}{6}-cosasin\frac{pi}{6}\right)\)
\(=2\cdot sin\left(a-\frac{pi}{6}\right)\)
Ta có\(-1\le sin\left(a-\frac{pi}{6}\right)\le1\)
\(-2\le sin\left(a-\frac{pi}{6}\right)\le2\)
Vậy Min=-2
Max=2
Để hiểu sâu cần bắt nguồn từ cái này: \(\left(a-b\right)^2\ge0\) {gốc lớp 8}
đẳng thức khi a=b
\(\left(a-b\right)^2=a^2+b^2-2ab\ge0\Rightarrow a^2+b^2\ge2ab\)(1) đẳng thức khi a=b
tương tự có \(c^2+d^2\ge2cd\) (2)
đẳng thức khi c=d
hiển nhiên \(\left\{{}\begin{matrix}a^2+b^2\ge0\\c^2+d^2\ge0\end{matrix}\right.\) với mọi a,b,c,d thuộc R
Nhân (1) với (2) => điều cần chứng minh
Đẳng thức khi a=b và c=d
ta có: \(ac+bd\ge2\sqrt{acdb}\Rightarrow\left(ac+db\right)^2\ge4acdb\). nên ta có hệ quả của bất đẳng thức cô-si.
để xảy ra cả bất đẳng thức và hệ quả thì a = b = c = d.
Lời giải:
Áp dụng BĐT Am-Gm:
\(\frac{3(x+y)}{2}.\frac{3(x+y)}{2}.(x+2z).(y+2z)\leq \left(\frac{3x+3y+x+2z+y+2z}{4}\right)^4=(x+y+z)^4\)
\(\Rightarrow \frac{4}{(x+y)\sqrt{(x+2z)(y+2z)}}=\frac{6}{\sqrt{\left ( \frac{3}{2} \right )^2(x+y)^2(x+2z)(y+2z)}}\geq\frac{6}{(x+y+z)^2}(1)\)
Tương tự \(\frac{5}{(y+z)\sqrt{(y+2x)z+2x)}}\geq \frac{15}{2(x+y+z)^2}(2)\)
Mặt khác, áp dụng BĐT Cauchy-Schwarz:
\((x^2+y^2+z^2+4)(1+1+1+1)\geq (x+y+z+2)^2\Rightarrow \frac{4}{\sqrt{x^2+y^2+z^2+4}}\leq \frac{8}{x+y+z+2}(3)\)
Từ \((1),(2),(3)\Rightarrow P\leq \frac{8}{x+y+z+2}-\frac{27}{2(x+y+z)^2}\)
Đặt \(x+y+z=t\). Ta sẽ đi tìm max của \(f(t)=\frac{8}{t+2}-\frac{27}{2t^2}\)
Có \(f'(t)=\frac{27}{t^3}-\frac{8}{(t+2)^2}=0\Leftrightarrow t=6\)\(\Rightarrow f(t)_{\max}=f(6)=\frac{5}{8}\)
\(\Rightarrow P_{\max}=\frac{5}{8}\). Dấu $=$ xảy ra khi $x=y=z=2$
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 9cm, CH = 16cm.
Độ dài cạnh AB là: ............. cm.
- 15
Giá trị của biểu thức B2 = ..............
- 5
- 0
- 4
Giá trị của x để biểu thức đạt giá trị lớn nhất là: .............
- -3/2
Ta có \(D=sin^2a-cosa-1=-cos^2a-cosa=-\left(cos^2a+cosa+\frac{1}{4}\right)+\frac{1}{4}\le\frac{1}{4}\)
mình đang học onl nên là rep muộn chút
Đặt \(sina=x;cosa=y\)ta có : \(x^2+y^2=1\)
Khi đó : \(-E=x^2+y^2-x-y-1=\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\)
\(< =>E\le\frac{3}{2}\)
sai thì thôi nhé