Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c.
\(f\left(x\right)=2x^2-3x\)
\(-\dfrac{b}{2a}=\dfrac{3}{4}\notin\left[4;6\right]\)
\(f\left(4\right)=20\) ; \(f\left(6\right)=54\)
\(\Rightarrow y_{max}=54\) ; \(y_{min}=20\)
d.
\(f\left(x\right)=-2x^2+x-3\)
\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-4;2\right]\)
\(f\left(-4\right)=-39\) ; \(f\left(\dfrac{1}{4}\right)=-\dfrac{23}{8}\) ; \(f\left(2\right)=-9\)
\(\Rightarrow y_{max}=-\dfrac{23}{8}\) ; \(y_{min}=-39\)
b) Áp dụng bất đẳng thức AM - GM:
\(\left(x^2+2\right)^3=\left(x^2+1+1\right)^3\ge27x^2\)
\(\Rightarrow\dfrac{x^2}{\left(x^2+2\right)^3}\le\dfrac{x^2}{27x^2}=\dfrac{1}{27}\).
Đẳng thức xảy ra khi \(x=\pm1\).
Vậy...
a, x2 + 2 ≥ 2x\(\sqrt{2}\)
⇒ \(\dfrac{x}{x^2+2}\le\dfrac{1}{2\sqrt{2}}=\dfrac{\sqrt{2}}{4}\) (DBXR khi x = \(\sqrt{2}\))
Tương tự trên
\(x^3+y^3+3xy\le1\Leftrightarrow\left(x+y\right)^3-1-3xy\left(x+y\right)+3xy\le0\)
\(\Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\le0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\le0\)
Do \(x^2+y^2-xy+x+y+1=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+x+y+1>0\)
\(\Rightarrow x+y-1\le0\Rightarrow x+y\le1\)
\(\Rightarrow P=\left(x+\dfrac{1}{4x}\right)+\left(y+\dfrac{1}{4y}\right)+\dfrac{3}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow P\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{y}{4y}}+\dfrac{3}{4}.\dfrac{4}{x+y}\ge2+\dfrac{3}{4}.\dfrac{4}{1}=5\)
\(P_{min}=5\) khi \(x=y=\dfrac{1}{2}\)
\(A=a+\frac{2}{a^2}=\frac{1}{2}a+\frac{1}{2}a+\frac{2}{a^2}\ge3\sqrt[3]{\frac{1}{2}a.\frac{1}{2}a.\frac{2}{a^2}}=3\sqrt[3]{\frac{1}{2}}\)
Dấu \(=\)khi \(\frac{1}{2}a=\frac{2}{a^2}\Leftrightarrow a=\sqrt[3]{4}\).
Ta có \(D=sin^2a-cosa-1=-cos^2a-cosa=-\left(cos^2a+cosa+\frac{1}{4}\right)+\frac{1}{4}\le\frac{1}{4}\)
mình đang học onl nên là rep muộn chút
Đặt \(sina=x;cosa=y\)ta có : \(x^2+y^2=1\)
Khi đó : \(-E=x^2+y^2-x-y-1=\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\)
\(< =>E\le\frac{3}{2}\)
sai thì thôi nhé