Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
`4(x-2)^2 =4`
`<=>(x-2)^2 =1`
`<=>x-2=1` hoặc `x-2=-1`
`<=>x=3` hoặc `x=1`
b)
`5(x^2 -6x+9)=5`
`<=>(x-3)^2 =1`
`<=>x-3=1`hoặc `x-3=-1`
`<=>x=4` hoặc `x=2`
c)
`4x^2 +4x+1=0`
`<=>(2x+1)^2 =0`
`<=>2x+1=0`
`<=>x=-1/2`
d)
`9x^2 +6x+1=2`
`<=>(3x+1)^2 =2`
\(< =>\left[{}\begin{matrix}3x+1=\sqrt{2}\\3x+1=-\sqrt{2}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{\sqrt{2}-1}{3}\\x=\dfrac{-\sqrt{2}-1}{3}\end{matrix}\right.\)
Ta có
x 2 + 6 x + 9 = 3 x - 1 ⇔ x + 3 2 = 3 x - 1
⇔ |x + 3| = 3x - 1 (2)
* Trường hợp 1: x + 3 ≥ 0 ⇔ x ≥ -3 ⇒ |x + 3| = x + 3
Suy ra: x + 3 = 3x - 1 ⇔ x - 3x = -1 - 3 ⇔ -2x = -4 ⇔ x = 2
Giá trị x = 2 thỏa mãn điều kiện x ≥ -3.
Vậy x = 2 là nghiệm của phương trình (2).
* Trường hợp 2: x + 3 < 0 ⇔ x < -3 ⇒ |x + 3| = -x - 3
Suy ra: -x - 3 = 3x - 1 ⇔ -x - 3x = -1 + 3 ⇔ -4x = 2 ⇔ x = -0.5
Giá trị x = -0,5 không thỏa mãn điều kiện x < -3: loại
Vậy x = 2
ĐK:(tự tìm)
Bình phương 2 vế
\(\Rightarrow2x+2\sqrt{x^2-14x+49}=14\)
\(\Leftrightarrow2x+2\sqrt{\left(x-7\right)^2}=14\)
\(\Leftrightarrow2x+2\left|x-7\right|=14\)
Xét \(x\ge7\)\(\Rightarrow2x+2x-14=14\)
\(\Leftrightarrow x=7\left(tm\right)\)
Xét x<7\(\Rightarrow2x-2x+14=14\)
\(\Leftrightarrow14=14\)(luôn đúng)
Thử lại,kết hợp với đk rồi kết luận
ĐK : \(x\ge\frac{7}{2}\)
Đặt \(\sqrt{14x-49}=a\) , ta có :
\(\sqrt{x+a}+\sqrt{x-a}=\sqrt{14}\)
\(\Leftrightarrow\left(\sqrt{x+a}+\sqrt{x-a}\right)^2=14\)
\(\Leftrightarrow x+a+x-a+2\sqrt{x^2-a^2}=14\)
\(\Leftrightarrow2x+2\sqrt{x^2-14x+49}=14\)
\(\Leftrightarrow2x+2\left|x-7\right|=14\)
TH 1 : \(x\ge7\) \(\Rightarrow4x-14=14\Leftrightarrow x=7\) ( t/m )
TH 2 : \(\frac{7}{2}\le x\le7\)
\(\Rightarrow2x+14-2x=14\)
\(\Leftrightarrow14=14\) ( t/m )
Vậy ...
ĐKXĐ:...
Bình phương 2 vế ta được:
\(2x+2\sqrt{x^2-14x+49}=14\)
\(\Leftrightarrow x-7+\sqrt{\left(x-7\right)^2}=0\)
\(\Leftrightarrow x-7+\left|x-7\right|=0\)
- Với \(\frac{49}{14}\le x\le7\Rightarrow...\)
- Với \(x>7\Rightarrow...\)
Đơn giản nên bạn tự phá trị tuyệt đối và giải
\(F=\sqrt{-3x^2-6x+2}\left(Đk:-1-\sqrt{\dfrac{5}{3}}\le x\le\sqrt{\dfrac{5}{3}}-1\right)\)
\(=\sqrt{-\left(3x^2+6x+3\right)+5}\)
\(=\sqrt{-3\left(x+1\right)^2+5}\)
Vì \(-\left(x+1\right)^2\le0\forall x\)
\(\Rightarrow F\le\sqrt{5}\)
\(MaxF=\sqrt{5}\Leftrightarrow x=-1\)