Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-5\right)\left(x+5\right)=264\)
\(\Leftrightarrow x^3+64-x^3+25x=264\)
\(\Leftrightarrow25x=200\)
hay x=8
a)\(x\left(x-3\right)-2x+6=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
b)\(\left(3x-5\right)\left(5x-7\right)+\left(5x+1\right)\left(2-3x\right)=4\)
\(\Leftrightarrow15x^2-46x+35-15x^2+7x+2-4=0\)
\(\Leftrightarrow33-39x=0\Leftrightarrow33=39x\Leftrightarrow x=\frac{33}{39}\)
a) \(x\left(x-3\right)-2x+6=0\)
\(x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)
b) \((3x-5)(5x-7)+(5x+1)(2-3x)=4\)
\(15x^2-46x+35+10x-15x^2+2-3x-4=0\)
\(33-39x=0\)
\(3\left(11-13x\right)=0\)
\(11-13x=0\)
\(13x=11\)
\(x=\frac{11}{13}\)
\(=\left(x^3-2x^2+x+2x^2-4x+2-2x+7\right):\left(x^2-2x+1\right)\\ =\left[\left(x^2-2x+1\right)\left(x+2\right)-2x+7\right]:\left(x^2-2x+1\right)\\ =x+2\left(dư:-2x+7\right)\)
\(a,\dfrac{11x}{2x-5}+\dfrac{x-30}{2x-5}=\dfrac{11x+x-30}{2x-5}=\dfrac{12x-30}{2x-5}=\dfrac{6\left(2x-5\right)}{2x-5}=6\)
\(b,\dfrac{3x^2-1}{2x}+\dfrac{x^2+1}{2x}=\dfrac{3x^2-1+x^2+1}{2x}=\dfrac{4x^2}{2x}=2x\)
\(c,\dfrac{3}{2x-5}+\dfrac{-2}{2x+5}+\dfrac{-20}{4x^2-25}=\dfrac{3\left(2x+5\right)}{\left(2x-5\right)\left(2x+5\right)}-\dfrac{2\left(2x-5\right)}{\left(2x-5\right)\left(2x+5\right)}-\dfrac{20}{\left(2x-5\right)\left(2x+5\right)}=\dfrac{6x+15-4x+10-20}{\left(2x-5\right)\left(2x+5\right)}=\dfrac{2x+5}{\left(2x-5\right)\left(2x+5\right)}=\dfrac{1}{2x-5}\)
\(d,\dfrac{x-2}{x-1}+\dfrac{x-3}{x+1}+\dfrac{4-2x^2}{x^2-1}=\dfrac{\left(x-2\right)\left(x+1\right)+\left(x-3\right)\left(x-1\right)+4-2x^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+x-2+x^2-3x-x+3+4-2x^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{-5x+5}{\left(x-1\right)\left(x+1\right)}=\dfrac{-5\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{-5}{x-1}\)
\(e,\dfrac{x+1}{x-1}+\dfrac{1-x}{x+1}+\dfrac{4}{x^2-1}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2+2x+1-x^2+2x-1+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\)
a, 3x2 - 8x + 4
= 3x2 - 6x - 2x + 4
= 3x(x - 2) - 2(x - 2)
= (3x - 2)(x - 2)
b, x2 - 4xy + 3y2
= x2 - xy - 3xy + 3y2
= x(x - y) - 3y(x - y)
= (x - 3y)(x - y)
\(a)3x^2-8x+4=3x^2-6x-2x+4=3x\left(x-2\right)-2\left(x-2\right)=\left(3x-2\right)\left(x-2\right)\)
\(b)x^2-4xy+3y^2=x^2-xy-3xy+3y^2=x\left(x-y\right)-3y\left(x-y\right)=\left(x-3y\right)\left(x-y\right)\)
\(c)2x^2+3881x-17505=2x^2+3890x-9x-17505=2x\left(x+1945\right)-9\left(x+1945\right)\)
\(=\left(2x-9\right)\left(x+1945\right)\)
a) \(\Leftrightarrow\left(3x+1\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)
b) \(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\\ \Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\\ \Leftrightarrow-2\left(2x-5\right)=0\\ \Leftrightarrow2x-5=0\\ \Leftrightarrow x=\dfrac{5}{2}\)
c) \(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
d) \(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\\ \Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
a) 3x(x-1)+(x-1).1=0
(x-1)(3x+1)=0
=> x-1=0 hoặc 3x+1 =0
=> x=1 hoặc x= -1/3