\(\mid\)\(\mid\)3x-3\(\mid\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019
<=>|3x-3|+2x+1=3x+1 <=>|3x-3|=x <=>3x-3=x hoặc 3x-3=-x <=>2x=3 hoặc 4x=3 <=>x=3/2 hoặc x=3/4
27 tháng 6 2018

1) |x|=x+2

=> \(\left[{}\begin{matrix}x=x+2\\x=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}0=2\left(voli\right)\\2x=-2\Rightarrow x=-1\end{matrix}\right.\)

vậy x=-1

c;b tương tự

2) \(\left|x-\dfrac{3}{2}\right|=\left|\dfrac{5}{2}-x\right|\)

=> \(\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{5}{2}-x\\x-\dfrac{3}{2}=x-\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\Rightarrow x=2\\0=-1\left(voli\right)\end{matrix}\right.\)

vậy x=2

5 tháng 7 2018

Cảm ơn bn nhìu nhoa

vuivuiyeu

AH
Akai Haruma
Giáo viên
25 tháng 6 2020

Đúng rồi bạn nhé.

25 tháng 6 2020

cảm ơn b

28 tháng 3 2019

Bài 1

A = \(\frac{17}{3}\)a\(x^2y^2+2x^2y^2\)

a) A \(\ge0\Leftrightarrow=\frac{17}{3}ax^2y^2+2x^2y^2\ge0\)

\(Taco:2x^2y^2\ge0;17x^2y^2\ge0\)

=> Để A \(\ge0\) thì a\(\ge0\)

b) Tương tự , ta có giá trị a thỏa mãn là

\(a\le0\)

c) Với a = 3 thì A \(=19x^2y^2=171\)

\(\Rightarrow x^2y^2=9\)

\(\Rightarrow\left[{}\begin{matrix}xy=3\\xy=-3\end{matrix}\right.\)

Vậy các cặp số x, y thỏa mãn là \(\left(x;y\right)\in\left\{x;y|xy=3\right\}\) hoặc

\(\left(x;y\right)\in\left\{x;y|xy=-3\right\}\)

28 tháng 3 2019

Bài 2

a)B \(\ge0\Leftrightarrow5ax^2y^2+3x^2y^2\ge0\)

Ta có

\(5x^2y^2\ge0;x^2y^2\ge0\)

=> B \(\ge0\) khi \(a\ge0\)

b) Tương tự , giá trị cần tìm là a\(\le0\)

c) Thay a = 2 , ta có

B \(=-10x^2y^2+3x^2y^2=-28\Rightarrow-7x^2y^2=-28\)

\(\Rightarrow x^2y^2=4\)

\(\Rightarrow\left\{{}\begin{matrix}xy=2\\xy=-2\end{matrix}\right.\)

Vậy các cặp số (x;y) thỏa mãn là (x;y ) \(\in\left\{x;y|xy=2\right\}\)

Hoặc \(\left(x;y\right)\in\left\{x;y|xy=-2\right\}\)

23 tháng 5 2020

Bài 1:

\(A=\left(x^3.x^3.x^2\right).\left(y.y^4\right).\left(\frac{2}{5}.\frac{-5}{4}\right)\)

\(A=x^8.y^5.\left(-\frac{1}{2}\right)\)

\(B=\left(x^5.x.x^2\right).\left(y^4.y^2.y\right).\left(\frac{-3}{4}.\frac{-8}{9}\right)\)

\(B=x^8.y^7.\frac{2}{3}\)

Bài 2:

\(A=\left(15.x^2.y^3-12.x^2.y^3\right)+\left(11x^3.y^2-8.x^3.y^2\right)+\left(7x^2-12x^2\right)\)

\(A=3.x^2.y^3+2.x^3.y^2-5x^2\)

B tương tự nhé, đáp án là (theo mình)

\(B=\frac{5}{2}.x^5.y+\frac{7}{3}.x.y^4-\frac{1}{4}.x^2.y^3\)

12 tháng 4 2017

a, Ta có: \(A=\left|x-1\right|+\left|x-2017\right|=\left|x-1\right|+\left|2017-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A\ge\left|x-1+2017-x\right|=\left|-2016\right|=2016\)

Dấu " = " khi \(\left\{{}\begin{matrix}x-1\ge0\\2017-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\le2017\end{matrix}\right.\Rightarrow1\le x\le2017\)

Vậy \(MIN_A=2016\) khi \(1\le x\le2017\)

b, Ta có: \(\left\{{}\begin{matrix}\left(x-5\right)^2\ge0\\\left|x-5\right|\ge0\end{matrix}\right.\Rightarrow\left(x-5\right)^2+\left|x-5\right|\ge0\)

\(\Rightarrow B=\left(x-5\right)^2+\left|x-5\right|+2014\ge2014\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-5\right)^2=0\\\left|x-5\right|=0\end{matrix}\right.\Rightarrow x=5\)

Vậy \(MIN_B=2014\) khi x = 5

12 tháng 4 2017

b may cho chú là chung nghiệm là x=5 nếu (x-6)^2+|x-5| thì sao? cần phải nhớ (x-6)^2=|x-6|^2 sau đó áp dụng |a|+|b|>=|a+b|

3 tháng 8 2020

Gửi lẻ những câu hỏi để nhanh nhận được câu trả lời nha bạn ơi