K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

Tự làm đê em ơi cô Viết cho xong lên mạng chứ j

30 tháng 8 2017

thg kia m nói ai là em hả

21 tháng 11 2017

vcl chết đi

tự mà mua sách giải

22 tháng 10 2017

Đặt tính \(2n^2-n+2\) : \(2n+1\) sẽ bằng n - 1 dư 3

Để chia hết thì 3 phải chia hết cho 2n + 1 hay 2n + 1 là ước của 3

Ư(3) = {\(\pm\) 3; \(\pm\) 1}

\(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)

\(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)

\(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)

\(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)

Vậy \(n=\left\{0;-2;\pm1\right\}\)

11 tháng 10 2017

oho

21 tháng 11 2017

A B C D H I K

AH
Akai Haruma
Giáo viên
13 tháng 8 2017

Lời giải:

Ta có \(P\) là trung điểm của $AB$, $N$ là trung điểm của $AC$ nên

\(AP=PB,AN=NC\Rightarrow \frac{AP}{PB}=\frac{AN}{NC}\)

Do đó theo định lý Tales suy ra \(PN\parallel BC\), mà \(AH\perp BC\Rightarrow PN\perp AH\) \((1)\)

Xét tam giác vuông tại $H$ là $AHB$ có $P$ là trung điểm của $AB$ nên $PA=PH$ . Tương tự, \(AN=NH\)$(2)$

Từ \((1),(2)\Rightarrow \) $PN$ là đường trung trực của $AH$

b) Do \(HM\parallel PN\Rightarrow HMNP\) là hình thang \((1)\)

Sử dụng tính chất so le trong và đồng vị với các đoạn \(PN\parallel BC, NM\parallel AB\) ta có:

\(\widehat{HPN}=\widehat{PHB}=90^0-\widehat{PHA}=90^0-\widehat{PAH}=\widehat{ABH}=\widehat{ABC}\)

\(\widehat{MNP}=\widehat{NMC}=\widehat{ABC}\)

Do đó \(\widehat{HPN}=\widehat{MNP}\) \((2)\)

Từ \((1),(2)\Rightarrow HMNP\) là hình thang cân.

7 tháng 10 2017

https://hoc24.vn/hoi-dap/question/54430.html

7 tháng 10 2017

 

\(A=\left(2n-1\right)^3-2n+1\)

\(A=8n^3-6n+6n-1-2n+1\)

\(A=8n^3-2n=2n\left(4n^2-1\right)\)

\(A=2n\left(2n+1\right)\left(2n-1\right)\)

\(A=\left(2n-1\right)2n\left(2n+1\right)⋮6\) ( 3 số tự nhiên liên tiếp)

29 tháng 10 2017

\(A=3x^2-12x+10\\ A=3x^2-12x+12-2\\ A=\left(3x^2-12x+12\right)-2\\ A=3\left(x^2-4x+4\right)-2\\ A=3\left(x^2-2\cdot x\cdot2+2^2\right)-2\\ A=3\left(x-2\right)^2-2\\ Do\left(x-2\right)^2\ge0\forall x\\ \Rightarrow3\left(x-2\right)^2\ge0\forall x\\ \Rightarrow A=3\left(x-2\right)^2-2\ge-2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \text{ Vậy }A_{\left(Min\right)}=-2\text{ khi }x=2\)

29 tháng 10 2017

A=3x2 - 12x + 10

A= (3x2- 2.3x.2+22)-22+10

A= (3x-2)2+6 \(\ge\) +6

Vậy min A = 6 . Dấu = xảy ra khi 3x -2 = 0

3x= 2

x= \(\dfrac{2}{3}\)

26 tháng 9 2017

a) \(x^3-\dfrac{1}{9}x=0\)

\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(x\left(x-3\right)+x-3=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)

c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)

\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)

\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)

d) \(x^2\left(x-3\right)+27-9x=0\)

\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)

\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)

\(\Rightarrow x-3=0\Rightarrow x=3.\)

4 tháng 10 2017

\(\dfrac{2}{5}\)