Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. a) Nếu n = 3k +1 thì n2 + (3k+1) (3k+1) hay n2 = 3k(3k+1)+ 3k +1.
Rõ ràng n2 chia co 3 dư 1.
Nếu n= 3k+2 thì n2 = (3k+2) (3k+2) hay n2 =3k(3k+2)+ 2 ( 3k + 2)
= 3k (3k+2 ) + 6k +4.
2 số hạngđầu chia hết cho 3, số hạng cuối chia cho 3 dư 1 nên n2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. vậy p2 chia cho 3 duw1 tức là p2 = 3k+1 do đó p2 + 2018 = 3k +1 + 2018 = 3k + 2019 cha hết cho 3. Vậy p2 + 2018 là hợp số
Tớ xin llõi, tớ muốn giúp cậu lắm nhưng tớ chua học, xin lõi nhé!
1.
a) \(A=2+\frac{1}{n-2}\)
\(A\in Z\Rightarrow n-2\in U\left(1\right)=\left\{-1,1\right\}\Rightarrow n\in\left\{1;3\right\}\)
b) Gọi \(d=ƯC\left(2n-3;n-2\right)\)
\(\Rightarrow\begin{cases}2n-3⋮d\\n-2⋮d\end{cases}\)
\(\Rightarrow\begin{cases}2n-3⋮d\\2\left(n-2\right)⋮d\end{cases}\)
\(\Rightarrow2n-3-2\left(n-2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
Vậy A là phân số tối giản.
2.
- Từ giả thiết ta có \(P=3k+1\) hoặc \(P=3k+2\) ( \(k\in N\)* )
- Nếu \(P=3k+2\) thì \(P+4=3k+6\) là hợp số ( loại )
- Nếu \(P=3k+1\) thì \(P-2014=3k-2013\) chia hết cho 3
Vậy p - 2014 là hợp số
Gọi d là ƯC của 7n + 10 và 5n + 7
Khi đó : 7n + 10 chia hết cho d và 5n + 7 chia hết cho d
<=> 5.(7n + 10) chia hết cho d và 7.(5n + 7) chia hết cho d
<=> 35n + 50 chia hết cho d và 35n + 49 chia hết cho d
=> (35n + 50) - (35n + 49) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau
Gọi d là ƯC của 7n + 10 và 5n + 7
Khi đó : 7n + 10 chia hết cho d và 5n + 7 chia hết cho d
<=> 5.(7n + 10) chia hết cho d và 7.(5n + 7) chia hết cho d
<=> 35n + 50 chia hết cho d và 35n + 49 chia hết cho d
=> (35n + 50) - (35n + 49) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau
Gọi hai số nguyên tố cần tìm là a và b Ta có quy tắc : số chẵn + số lẻ =số lẻ Theo đề bài cho tổng a và b = 601 (số lẻ ). Nên ta có a là số chẵn mà là số nguyên tố . Vậy a là hai vì hai là số nguyên tố chẵn duy nhất Từ các lập luận trên ta có biểu thức : a+b=601. 2+b=601. b=601-2. b=599. Vậy b =599.hai số nguyên tố cần tìm là 2 và 599 ( bài 1)