K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

\(M=\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+...+\frac{4019}{2009^22010^2}\)

\(M=\frac{2^2-1^2}{1^22^2}+\frac{3^2-2^2}{2^23^2}+\frac{4^2-3^2}{3^24^2}+...+\frac{2010^2-2009^2}{2009^22010^2}\)

\(M=\frac{2^2}{1^22^2}-\frac{1^2}{1^22^2}+\frac{3^2}{2^23^2}-\frac{2^2}{2^23^2}+\frac{4^2}{3^24^2}-\frac{3^2}{3^24^2}+...+\frac{2010^2}{2009^22010^2}-\frac{2009^2}{2009^22010^2}\)

\(M=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}\)

\(M=1-\frac{1}{2010^2}< 1\)

Vậy \(M< 1\)

Chúc bạn học tốt ~ 

26 tháng 3 2019

\(M=\frac{2^2-1^2}{1^2\cdot2^2}+\frac{3^2-2^2}{2^2\cdot3^2}+...+\frac{2010^2-2009^2}{2009^2\cdot2010^2}\)

\(M=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}\)

\(M=1-\frac{1}{2010^2}< 1\)

26 tháng 3 2019

Ta có : \(M=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{4019}{2009^2.2010^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}\)

\(=\frac{1}{1^2}-\frac{1}{2010^2}=1-\frac{1}{2010^2}< 1\)

\(\Rightarrow M< 1\left(đpcm\right)\)

15 tháng 5 2016

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.....+\frac{19}{9^2.10^2}\)

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+......+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+.....+\frac{1}{9^2}-\frac{1}{10^2}\)

\(=\frac{1}{1^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\left(đpcm\right)\)

17 tháng 1 2020

b) \(\frac{\frac{2}{3}+\frac{5}{7}+\frac{4}{21}}{\frac{5}{6}+\frac{11}{7}-\frac{7}{21}}\)

\(=\frac{\frac{29}{21}+\frac{4}{21}}{\frac{101}{42}-\frac{7}{21}}\)

\(=\frac{\frac{11}{7}}{\frac{29}{14}}\)

\(=\frac{22}{29}.\)

Chúc bạn học tốt!

18 tháng 12 2016

lớn hơn , bé hơn hoặc bằng dễ òm đi chịch hk cưng ?

18 tháng 12 2016

ĐANG CẦN GẤP

27 tháng 3 2018

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2009}}\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2008}}\)

\(\Rightarrow3B-B=2B=\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2008}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2009}}\right)\)

\(\Rightarrow2B=1-\frac{1}{3^{2009}}< 1\)

\(\Rightarrow2B< 1\)

\(\Rightarrow B< \frac{1}{2}\)

11 tháng 10 2017

ta có A= \(\frac{8^{18}+1}{8^{19} +1}\)=> 8A=\(\frac{8^{19}+8}{8^{19}+1}\)\(\frac{\left(8^{19}+1\right)+7}{8^{19}+1}\)=\(\frac{8^{19}+1}{8^{19} +1}\)+\(\frac{7}{8^{19}+1}\) =1+\(\frac{7}{8^{19}+1}\) =\(\frac{7}{8^{19}+1}\) 

         B= \(\frac{8^{23}+1}{8^{24}+1}\)=> 8B=\(\frac{8^{24}+8}{8^{24}+1}\)\(\frac{\left(8^{24}+1\right)+7}{8^{24}+1}\)=\(\frac{8^{24}+1}{8^{24}+1}\)+\(\frac{7}{8^{24}+1}\) =1+\(\frac{7}{8^{24} +1}\)=\(\frac{7}{8^{24}+1}\)

       vì  \(8^{19}\)<\(8^{24}\)=> \(8^{19}\)+1 >\(8^{24}\)+1 => \(\frac{7}{8^{19}+1}\)<\(\frac{7}{8^{24}+1}\)=> A<B

a) ta có \(8A=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\\ 8B=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)

Vì \(8^{24}+1>8^{19}+1\\\frac{7}{8^{24}+1}< \frac{7}{8^{19}+1} \)

vậy 8A>8B nên A>B

18 tháng 12 2016

a) \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}\)

= \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+\frac{1}{2}-\frac{36}{41}\)

= \(\frac{1}{2}-\left\{\frac{11}{24}+\frac{13}{24}\right\}-\left\{\frac{5}{41}+\frac{36}{41}\right\}\)

=\(\frac{1}{2}-\frac{24}{24}-\frac{41}{41}\)

=\(\frac{1}{2}-1-1\)

=\(\frac{-3}{2}\)

b) \(-12:\left\{\frac{3}{4}-\frac{5}{6}\right\}^2\)

= \(-12:\left\{\frac{9}{12}-\frac{10}{12}\right\}^2\)

= \(-12:\left\{\frac{-1}{12}\right\}^2\)

= \(-12:\frac{1}{144}\)

= \(-12.144\)

= -1728

c) \(\frac{7}{23}.\left[\left(\frac{-8}{6}\right)-\frac{45}{18}\right]\)

= \(\frac{7}{23}.\left[\left(\frac{-24}{18}\right)-\frac{45}{18}\right]\)

= \(\frac{7}{23}.\left(\frac{-23}{6}\right)\)

= \(\frac{-7}{6}\)

d) \(23\frac{1}{4}.\frac{7}{5}-13\frac{1}{4}:\frac{5}{7}\)

= \(23\frac{1}{4}.\frac{7}{5}-13\frac{1}{4}.\frac{7}{5}\)

= \(\left\{23\frac{1}{4}-13\frac{1}{4}\right\}.\frac{7}{5}\)

= \(10.\frac{7}{5}\)

= 14

 

e) (1+2314).(0,834)2

= (1+2314).(\(\frac{4}{5}\)34)2

= \(\left(\frac{12}{12}+\frac{8}{12}-\frac{3}{12}\right).\left(\frac{16}{20}-\frac{15}{20}\right)^2\)

= \(\frac{17}{12}.\left(\frac{1}{20}\right)^2\)

= \(\frac{17}{20}.\frac{1}{400}\)

= \(\frac{17}{8000}\)