Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{2^2-1^2}{1^2\cdot2^2}+\frac{3^2-2^2}{2^2\cdot3^2}+...+\frac{2010^2-2009^2}{2009^2\cdot2010^2}\)
\(M=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}\)
\(M=1-\frac{1}{2010^2}< 1\)
Ta có : \(M=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{4019}{2009^2.2010^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}\)
\(=\frac{1}{1^2}-\frac{1}{2010^2}=1-\frac{1}{2010^2}< 1\)
\(\Rightarrow M< 1\left(đpcm\right)\)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.....+\frac{19}{9^2.10^2}\)
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+......+\frac{10^2-9^2}{9^2.10^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+.....+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=\frac{1}{1^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\left(đpcm\right)\)
b) \(\frac{\frac{2}{3}+\frac{5}{7}+\frac{4}{21}}{\frac{5}{6}+\frac{11}{7}-\frac{7}{21}}\)
\(=\frac{\frac{29}{21}+\frac{4}{21}}{\frac{101}{42}-\frac{7}{21}}\)
\(=\frac{\frac{11}{7}}{\frac{29}{14}}\)
\(=\frac{22}{29}.\)
Chúc bạn học tốt!
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2009}}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2008}}\)
\(\Rightarrow3B-B=2B=\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2008}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2009}}\right)\)
\(\Rightarrow2B=1-\frac{1}{3^{2009}}< 1\)
\(\Rightarrow2B< 1\)
\(\Rightarrow B< \frac{1}{2}\)
ta có A= \(\frac{8^{18}+1}{8^{19} +1}\)=> 8A=\(\frac{8^{19}+8}{8^{19}+1}\)= \(\frac{\left(8^{19}+1\right)+7}{8^{19}+1}\)=\(\frac{8^{19}+1}{8^{19} +1}\)+\(\frac{7}{8^{19}+1}\) =1+\(\frac{7}{8^{19}+1}\) =\(\frac{7}{8^{19}+1}\)
B= \(\frac{8^{23}+1}{8^{24}+1}\)=> 8B=\(\frac{8^{24}+8}{8^{24}+1}\)= \(\frac{\left(8^{24}+1\right)+7}{8^{24}+1}\)=\(\frac{8^{24}+1}{8^{24}+1}\)+\(\frac{7}{8^{24}+1}\) =1+\(\frac{7}{8^{24} +1}\)=\(\frac{7}{8^{24}+1}\)
vì \(8^{19}\)<\(8^{24}\)=> \(8^{19}\)+1 >\(8^{24}\)+1 => \(\frac{7}{8^{19}+1}\)<\(\frac{7}{8^{24}+1}\)=> A<B
a) ta có \(8A=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\\ 8B=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)
Vì \(8^{24}+1>8^{19}+1\\\frac{7}{8^{24}+1}< \frac{7}{8^{19}+1} \)
vậy 8A>8B nên A>B
a) \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}\)
= \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+\frac{1}{2}-\frac{36}{41}\)
= \(\frac{1}{2}-\left\{\frac{11}{24}+\frac{13}{24}\right\}-\left\{\frac{5}{41}+\frac{36}{41}\right\}\)
=\(\frac{1}{2}-\frac{24}{24}-\frac{41}{41}\)
=\(\frac{1}{2}-1-1\)
=\(\frac{-3}{2}\)
b) \(-12:\left\{\frac{3}{4}-\frac{5}{6}\right\}^2\)
= \(-12:\left\{\frac{9}{12}-\frac{10}{12}\right\}^2\)
= \(-12:\left\{\frac{-1}{12}\right\}^2\)
= \(-12:\frac{1}{144}\)
= \(-12.144\)
= -1728
c) \(\frac{7}{23}.\left[\left(\frac{-8}{6}\right)-\frac{45}{18}\right]\)
= \(\frac{7}{23}.\left[\left(\frac{-24}{18}\right)-\frac{45}{18}\right]\)
= \(\frac{7}{23}.\left(\frac{-23}{6}\right)\)
= \(\frac{-7}{6}\)
d) \(23\frac{1}{4}.\frac{7}{5}-13\frac{1}{4}:\frac{5}{7}\)
= \(23\frac{1}{4}.\frac{7}{5}-13\frac{1}{4}.\frac{7}{5}\)
= \(\left\{23\frac{1}{4}-13\frac{1}{4}\right\}.\frac{7}{5}\)
= \(10.\frac{7}{5}\)
= 14
e) (1+23−14).(0,8−34)2
= (1+23−14).(\(\frac{4}{5}\)−34)2
= \(\left(\frac{12}{12}+\frac{8}{12}-\frac{3}{12}\right).\left(\frac{16}{20}-\frac{15}{20}\right)^2\)
= \(\frac{17}{12}.\left(\frac{1}{20}\right)^2\)
= \(\frac{17}{20}.\frac{1}{400}\)
= \(\frac{17}{8000}\)
\(M=\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+...+\frac{4019}{2009^22010^2}\)
\(M=\frac{2^2-1^2}{1^22^2}+\frac{3^2-2^2}{2^23^2}+\frac{4^2-3^2}{3^24^2}+...+\frac{2010^2-2009^2}{2009^22010^2}\)
\(M=\frac{2^2}{1^22^2}-\frac{1^2}{1^22^2}+\frac{3^2}{2^23^2}-\frac{2^2}{2^23^2}+\frac{4^2}{3^24^2}-\frac{3^2}{3^24^2}+...+\frac{2010^2}{2009^22010^2}-\frac{2009^2}{2009^22010^2}\)
\(M=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}\)
\(M=1-\frac{1}{2010^2}< 1\)
Vậy \(M< 1\)
Chúc bạn học tốt ~