\(M=\frac{2n+3}{2n+1}.\)Tìm n\(\varepsilon\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2015

K biết đúng hay sai nghe

Để M là số nguyên <=> 2n+3 chia hết cho 2n+1

=> (2n+3)-(2n+1)chia hết cho 2n+1

=>2n+3-2n-1 chia hết cho 2n+1

=>2 chia hết cho 2n+1

=>2n+1\(\in\)Ư(2)={1;-1;2;-2}

2n+11-12-2
2n0-21-3
n0\(\in\)Z-1\(\in\)Z0,5\(\notin\)Z-1,5\(\notin\)Z

Vậy n\(\in\){0;-1}

\(\frac{3n+1}{5-2n}\Leftrightarrow3n+1⋮5-2n\)

\(\Rightarrow3n+1⋮2n-5\)

\(\Rightarrow\left(2n-5\right)+11⋮2n-5\)

\(\Rightarrow2n-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow2n-5=1;-1;11;-11\)

\(\Rightarrow2n=6;4;16;-6\)

\(\Rightarrow n=3;2;8;-3\)

\(\left(3x-1\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)

\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)

\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)

27 tháng 12 2018

a, ĐỂ \(\frac{24}{2n+5}\)là số nguyên 

\(\Rightarrow24⋮2n+5\Rightarrow2n+5\inƯ\left(24\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)

2n + 5 = 1 => 2n = -4 => n = -2 

2n + 5 = -1 => n = -3 

... tương tự thay vào nhé ! 

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

6 tháng 5 2018

Sorry mọi người nha, mình lỡ bấm sang \(\varepsilon\). Nó là \(\in\)đó các bạn

29 tháng 7 2018

a) ta có: \(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2.\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)

Để A nhận giá trị nguyên

=> 5/2n+3 thuộc Z

=> 5 chia hết cho 2n+3

=> 2n+3 thuộc Ư(5)={1;-1;5;-5}

nếu 2n+3 = 1 => 2n = -2 => n = -1 (TM)

2n+3 = -1 => 2n = -4 => n = -2 (TM)

2n+3 = 5 => 2n = 2 => n = 1 (TM)

2n+3 = -5 => 2n = 8 => n = -4 (TM)

KL:...

b) tìm n thuộc Z để A là phân số tối giản

Để A là phân số tối giản

\(\Rightarrow n\notin\left\{-1;-2;1;-4\right\}\)

29 tháng 7 2018

a) Để A nhận giá trị nguyên thì 4n+1 phải chia hết cho 2n+3

\(\Rightarrow4n+1⋮2n+3\)(1)

Lại có:\(\left(2n+3\right)\times2⋮2n+3\)

\(\Rightarrow4n+6⋮2n+3\)(2)

Từ (1) và (2) suy ra:

\(\left(4n+6\right)-\left(4n+1\right)⋮2n+3\)

\(\Rightarrow4n+6-4n-1⋮2n+3\)

\(\Rightarrow\left(4n-4n\right)+\left(6-1\right)⋮2n+3\)

\(\Rightarrow5⋮2n+3\)

\(\Rightarrow2n+3\inƯ\left(5\right)\)

mà Ư(5)=(-5;-1;1;5)

\(\Rightarrow2n+3\in\left(-5;-1;1;5\right)\)

\(\Rightarrow2n\in\left(-8;-4;4;8\right)\)

\(\Rightarrow n\in\left(-4;-2;2;4\right)\)

Vậy với \(n\in\left(-4;-2;2;4\right)\)

3 tháng 2 2015

a, Để 5/(n-3) là số nguyên thì n -3 phải thuộc vào tập hợp ước của 5 bao gồm 1;-1;5;-5

 *n-3=1=>n=4

*n-3=-1=>n=2

*n-3=5=>n=8

*n-3=-5=>n=-2