\(\frac{2015\cdot a}{ab+2015\cdot a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\) biet a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

Ta có

\(M=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)

\(=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)

\(=\frac{ac+c+1}{ac+c+1}=1\)

28 tháng 11 2016

ôi câu hỏi hay có khác j câu này Câu hỏi của Lê Phương Thảo - Toán lớp 8 - Học toán với OnlineMath

8 tháng 1 2017

Ta có:
\(M=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{abca}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{abca}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{ac+c+1}{ac+c+1}=1\)

Vậy M = 1

8 tháng 1 2017

Thay 2015= abc vào M ta được:

M = \(\frac{abca}{ab+abca+abc}\) + \(\frac{b}{bc+b+abc}\) + \(\frac{c}{ac+c+1}\)

M = \(\frac{abca}{ab\left(1+ac+c\right)}\) + \(\frac{b}{b\left(c+1+ac\right)}\) + \(\frac{c}{ac+c+1}\)

M = \(\frac{ac}{1+ac+c}\) + \(\frac{1}{c+1+ac}\) + \(\frac{c}{ac+c+1}\)

M = \(\frac{1+ac+c}{1+ac+c}\) = 1

Vây M = 1

XONG ! ok

16 tháng 12 2015

\(M=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+a}=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+a}=\frac{ac+c+1}{ac+c+1}=1\)

25 tháng 3 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{\left(a+b+c\right)c}\)

\(\Leftrightarrow\left(a+b\right)\left(a+b+c\right)c=-\left(a+b\right)ab\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

Tự làm nốt

6 tháng 11 2017

Muốn cho số có hai chữ số giống nhau và chia hết cho 2 thì số đó phải là một trong các số 22, 44, 66, 88. Bây giờ ta tìm trong những số này số mà chia cho 5 thì dư 3.

Đó là số 88.



Xem thêm tại: http://loigiaihay.com/bai-99-trang-39-sgk-toan-6-tap-1-c41a3896.html#ixzz4xczZ4dOb

29 tháng 6 2019

a.D=4a(3+b)+a*2a-3ab=12a+4ab+2a2-3ab=2a2+ab+12a=a(2a+b+12)

b.bạn viết đề kiểu j vậy

29 tháng 6 2019

Ko sai đề nha bn

18 tháng 3 2017

Vì  \(a,b,c\)  lần lượt là độ dài ba cạnh của 1 tam giác cho trước nên suy ra  \(a,b,c>0\)

\(----------------\)

Áp dụng bất đẳng thức  \(AM-GM\)  cho hai số dương, ta có:

\(\frac{a^{2016}}{b+c-a}+\left(b+c-a\right)a^{2014}\ge2\sqrt{\frac{a^{2016}}{b+c-a}.\left(b+c-a\right)a^{2014}}=2a^{2015}\)

\(\Rightarrow\)  \(\frac{a^{2016}}{b+c-a}+a^{2014}b+ca^{2014}\ge3a^{2015}\)  \(\left(1\right)\)

Theo đó, ta cũng thiết lập tương tự hai bất đẳng thức mới bắt đầu với các hoán vị  \(b\rightarrow c\rightarrow a,\)   thu được:

\(\frac{b^{2016}}{c+a-b}+b^{2014}c+ab^{2014}\ge3b^{2015}\)  \(\left(2\right)\)

\(\frac{c^{2016}}{a+b-c}+c^{2014}a+bc^{2014}\ge3c^{2015}\)  \(\left(3\right)\)

Cộng ba bất đẳng thức  \(\left(1\right);\left(2\right)\)  và   \(\left(3\right),\) đồng thời chuyển vế,  khi đó bđt mới có dạng:

\(\frac{a^{2016}}{b+c-a}+\frac{b^{2016}}{c+a-b}+\frac{c^{2016}}{a+b-c}\ge3\left(a^{2015}+b^{2015}+c^{2015}\right)\) 

\(-\left[ab\left(a^{2013}+b^{2013}\right)+bc\left(b^{2013}+c^{2013}\right)+ca\left(c^{2013}+a^{2013}\right)\right]\)  \(\left(\alpha\right)\)

\(----------------\)

Mặt khác, lại theo bđt  \(AM-GM,\)   ta có:

\(\Omega_1:\)  \(2014a^{2015}+b^{2015}\ge2015\sqrt[2015]{\left(a^{2014}b\right)^{2015}}=2015a^{2014}b\)

\(\Omega_2:\)  \(2014b^{2015}+a^{2015}\ge2015\sqrt[2015]{\left(b^{2014}a\right)^{2015}}=2015b^{2014}a\)

Cộng từng vế của hai bđt ở trên và rút gọn, khi đó:     

\(a^{2015}+b^{2015}\ge a^{2014}b+b^{2014}a=ab\left(a^{2013}+b^{2013}\right)\)    \(\left(1^'\right)\)

Tương tự ta thực hiện các dãy biến đổi như trên, nhận được:  

\(b^{2015}+c^{2015}\ge bc\left(b^{2013}+c^{2013}\right)\)  \(\left(2^'\right)\)

\(c^{2015}+a^{2015}\ge ca\left(c^{2013}+a^{2013}\right)\)  \(\left(3^'\right)\)

Từ   \(\left(1^'\right);\left(2^'\right)\)  và  \(\left(3^'\right)\)  suy ra  \(2\left(a^{2015}+b^{2015}+c^{2015}\right)\ge\left[ab\left(a^{2013}+b^{2013}\right)+bc\left(b^{2013}+c^{2013}\right)+ca\left(c^{2013}+a^{2013}\right)\right]\)   \(\left(\beta\right)\)

\(----------------\)

\(\left(\alpha\right);\beta\)  \(\Rightarrow\)  \(đpcm\)

Dấu  \("="\)  xảy ra   \(\Leftrightarrow\)  \(a=b=c,\)   tức là tam giác khi đó phải là một tam giác đều!