Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(M=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)
\(\Rightarrow M=\frac{abca}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(\Rightarrow M=\frac{abca}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(\Rightarrow M=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(\Rightarrow M=\frac{ac+c+1}{ac+c+1}=1\)
Vậy M = 1
Thay 2015= abc vào M ta được:
M = \(\frac{abca}{ab+abca+abc}\) + \(\frac{b}{bc+b+abc}\) + \(\frac{c}{ac+c+1}\)
M = \(\frac{abca}{ab\left(1+ac+c\right)}\) + \(\frac{b}{b\left(c+1+ac\right)}\) + \(\frac{c}{ac+c+1}\)
M = \(\frac{ac}{1+ac+c}\) + \(\frac{1}{c+1+ac}\) + \(\frac{c}{ac+c+1}\)
M = \(\frac{1+ac+c}{1+ac+c}\) = 1
Vây M = 1
XONG !
\(M=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+a}=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+a}=\frac{ac+c+1}{ac+c+1}=1\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{\left(a+b+c\right)c}\)
\(\Leftrightarrow\left(a+b\right)\left(a+b+c\right)c=-\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
Tự làm nốt
Muốn cho số có hai chữ số giống nhau và chia hết cho 2 thì số đó phải là một trong các số 22, 44, 66, 88. Bây giờ ta tìm trong những số này số mà chia cho 5 thì dư 3.
Đó là số 88.
Xem thêm tại: http://loigiaihay.com/bai-99-trang-39-sgk-toan-6-tap-1-c41a3896.html#ixzz4xczZ4dOb
a.D=4a(3+b)+a*2a-3ab=12a+4ab+2a2-3ab=2a2+ab+12a=a(2a+b+12)
b.bạn viết đề kiểu j vậy
Vì \(a,b,c\) lần lượt là độ dài ba cạnh của 1 tam giác cho trước nên suy ra \(a,b,c>0\)
\(----------------\)
Áp dụng bất đẳng thức \(AM-GM\) cho hai số dương, ta có:
\(\frac{a^{2016}}{b+c-a}+\left(b+c-a\right)a^{2014}\ge2\sqrt{\frac{a^{2016}}{b+c-a}.\left(b+c-a\right)a^{2014}}=2a^{2015}\)
\(\Rightarrow\) \(\frac{a^{2016}}{b+c-a}+a^{2014}b+ca^{2014}\ge3a^{2015}\) \(\left(1\right)\)
Theo đó, ta cũng thiết lập tương tự hai bất đẳng thức mới bắt đầu với các hoán vị \(b\rightarrow c\rightarrow a,\) thu được:
\(\frac{b^{2016}}{c+a-b}+b^{2014}c+ab^{2014}\ge3b^{2015}\) \(\left(2\right)\)
\(\frac{c^{2016}}{a+b-c}+c^{2014}a+bc^{2014}\ge3c^{2015}\) \(\left(3\right)\)
Cộng ba bất đẳng thức \(\left(1\right);\left(2\right)\) và \(\left(3\right),\) đồng thời chuyển vế, khi đó bđt mới có dạng:
\(\frac{a^{2016}}{b+c-a}+\frac{b^{2016}}{c+a-b}+\frac{c^{2016}}{a+b-c}\ge3\left(a^{2015}+b^{2015}+c^{2015}\right)\)
\(-\left[ab\left(a^{2013}+b^{2013}\right)+bc\left(b^{2013}+c^{2013}\right)+ca\left(c^{2013}+a^{2013}\right)\right]\) \(\left(\alpha\right)\)
\(----------------\)
Mặt khác, lại theo bđt \(AM-GM,\) ta có:
\(\Omega_1:\) \(2014a^{2015}+b^{2015}\ge2015\sqrt[2015]{\left(a^{2014}b\right)^{2015}}=2015a^{2014}b\)
\(\Omega_2:\) \(2014b^{2015}+a^{2015}\ge2015\sqrt[2015]{\left(b^{2014}a\right)^{2015}}=2015b^{2014}a\)
Cộng từng vế của hai bđt ở trên và rút gọn, khi đó:
\(a^{2015}+b^{2015}\ge a^{2014}b+b^{2014}a=ab\left(a^{2013}+b^{2013}\right)\) \(\left(1^'\right)\)
Tương tự ta thực hiện các dãy biến đổi như trên, nhận được:
\(b^{2015}+c^{2015}\ge bc\left(b^{2013}+c^{2013}\right)\) \(\left(2^'\right)\)
\(c^{2015}+a^{2015}\ge ca\left(c^{2013}+a^{2013}\right)\) \(\left(3^'\right)\)
Từ \(\left(1^'\right);\left(2^'\right)\) và \(\left(3^'\right)\) suy ra \(2\left(a^{2015}+b^{2015}+c^{2015}\right)\ge\left[ab\left(a^{2013}+b^{2013}\right)+bc\left(b^{2013}+c^{2013}\right)+ca\left(c^{2013}+a^{2013}\right)\right]\) \(\left(\beta\right)\)
\(----------------\)
\(\left(\alpha\right);\beta\) \(\Rightarrow\) \(đpcm\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c,\) tức là tam giác khi đó phải là một tam giác đều!
Ta có
\(M=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)
\(=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac+c+1}{ac+c+1}=1\)
ôi câu hỏi hay có khác j câu này Câu hỏi của Lê Phương Thảo - Toán lớp 8 - Học toán với OnlineMath