K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2015

\(M=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}\)

\(2M=2\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+..+\left(\frac{1}{2}\right)^{100}\right]\)

\(2M=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{100}\)

\(2M-M=\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{99}\right]-\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}\right]\)

\(M=1-\left(\frac{1}{2}\right)^{100}

18 tháng 7 2018

ta có: \(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}\)

\(\Rightarrow2B=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{99}\)

\(\Rightarrow2B-B=1-\left(\frac{1}{2}\right)^{100}\)

\(\Rightarrow B=1-\left(\frac{1}{2}\right)^{100}< 1\left(đpcm\right)\)

2 tháng 4 2023

1+1=3 :)))

M=-(\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{1-100^2}{100^2}\))

=-(\(\frac{1.3}{2.2}.\frac{2.4}{3.3}\frac{3.5}{4.4}...\frac{99.100}{100.100}\))

=-(\(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...100}{2.3.4..100}\))

=-(\(\frac{1}{100}.\frac{1}{2}\))

=\(\frac{-1}{200}\)

12 tháng 7 2018

thanks you very very much

29 tháng 3 2016

giúp mik với các bn ơi

1 tháng 6 2017

Ta có :

M = \(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

M = \(\frac{1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{91}+1\right)+...+\left(\frac{98}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

M = \(\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

M = \(\frac{100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

M = \(100\)

N = \(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)

N = \(\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)

N = \(\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)

N = \(\frac{8.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}\)

N = \(40\)

\(\Rightarrow\)M : N = \(\frac{100}{40}\%=250\%\)

1 tháng 6 2017

thiếu đề r bn

Bài 2

Số các số hang của M là:

(100-2):2+1=50 số

Tổng của M là:

(2+100)x50:2=2550

                  Đáp/Số:.........

 

25 tháng 3 2020

1, =\(\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}=\frac{1}{2}\)

2, A=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)

\(\frac{1\cdot2\cdot3\cdot....\cdot99}{2\cdot3\cdot4\cdot...\cdot100}=\frac{1}{100}\)

Vậy ......

hok tốt