K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đây không phải là mệnh đề

10 tháng 1 2023

"n chia hết cho 3", với n là số tự nhiên.  Đây là không phải là 1 mệnh đề vì không xác định được tính đúng sai của mệnh đề này (phụ thuộc vào biến n) 

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta chưa thể khẳng định được tính đúng sai của câu “n chia hết cho 3” do chưa có giá trị cụ thể của n.

b) Với n = 21 thì câu ”21 chia hết cho 3” là mệnh đề toán học. Mệnh đề này đúng.

c) Với n = 10 thì câu ”10 chia hết cho 3” là mệnh đề toán học. Mệnh đề này sai.

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:
a. Đúng, vì $x=0$ thì $x+1=1$, mà $0\vdots 1$

Mệnh đề phủ định:

$\forall x\in\mathbb{N}; x\not\vdots x+1$

b. Sai, vì $x=0$ thì $0^2<1$

Mệnh đề phủ định: $\exists x\in\mathbb{Z}, x\geq -1\Rightarrow x^2< 1$

26 tháng 8 2021

câu a có trường hợp x = 1 thì sao ạ ?

 

29 tháng 8 2018

Mệnh đề: "Với mọi số nguyên n không chia hết cho 3, n 2 − 1 chia hết cho 3". 

Mệnh đề phủ định của mệnh đề trên là  "Tồn tại số nguyên n không chia hết cho 3,  n 2 − 1  không chia hết cho 3".

Mệnh đề phủ định của mệnh đề  " ∀ x ∈ X ; ​​   P ( x ) " là  " ∃ x ∈ X ; ​​   P ( x ) ¯ "

Đáp án A

14 tháng 9 2023

a) \(\forall x\in R,x>1\Rightarrow\dfrac{2x}{x+1}< 1\rightarrow Sai\)

vì \(\dfrac{2x}{x+1}< 1\Leftrightarrow\dfrac{x-1}{x+1}< 0\Leftrightarrow x< 1\left(mâu.thuẫn.x>1\right)\)

b) \(\forall x\in R,x>1\Rightarrow\dfrac{2x}{x+1}>1\rightarrowĐúng\)

Vì \(\dfrac{2x}{x+1}>1\Leftrightarrow\dfrac{x-1}{x+1}>0\Leftrightarrow x>1\left(đúng.đk\right)\)

c) \(\forall x\in N,x^2⋮6\Rightarrow x⋮6\rightarrowđúng\)

\(\forall x\in N,x^2⋮9\Rightarrow x⋮9\rightarrowđúng\)

 

Bạn ghi lại đề đi bạn

AH
Akai Haruma
Giáo viên
20 tháng 9 2023

Lời giải:
$n^3-n=n(n^2-1)=n(n-1)(n+1)$ là tích của 3 số nguyên liên tiếp nên luôn chia hết cho $3$

Do đó mệnh đề $P$ đúng.

8 tháng 9 2020

Mệnh đề đúng.

Vì \(\left(2n-1\right)^2-1=4n^2-4n+1-1=4\left(n^2-n\right)⋮4,\forall n\inℕ\)

Phủ định: \(\exists n\inℕ,\left(2n-1\right)^2-1⋮̸4\)

8 tháng 9 2020

\(\left(2n-1\right)^2-1\) 

\(=4n^2-4n+1-1\) 

\(=4n^2-4n\) 

\(=4n\left(n-1\right)⋮4\forall n\) 

Vậy mệnh đề trên đúng 

Mệnh đề phủ định của mệnh đề trên 

\(\exists x\in R:\left(2n-1\right)^2-1\) không chia hết cho 4 

16 tháng 10 2023

loading...  loading...  loading...  loading...  loading...  loading...