Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu đề là rút gọn thì làm như này nha:
A = 3(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2²-1)(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2^4 - 1)(2^4 + 1)....(2^64 + 1) + 1
= (2^8 - 1).(2^8 + 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^16 - 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^32 - 1)(2^32 + 1)(2^64 + 1) + 1
= (2^64 - 1)(2^64 + 1) + 1 = 2^128 - 1 + 1 = 2^128.
Câu 1:
\(3x\left(12x+4\right)+9x\left(4x+3\right)\)
\(\Leftrightarrow3x\left(12x+4\right)+3x\left[3.\left(4x+3\right)\right]\)
\(\Leftrightarrow3x\left(12x+4\right)+3x\left(12x+6\right)\)
\(\Leftrightarrow3x\left[12x+4+12x+6\right]\)
\(\Leftrightarrow3x.\left(24x+10\right)\)
\(\Leftrightarrow72x^2+30x\)
Câu 2:
\(x\left(5+2x\right)+2x^2\left(x-1\right)\)
\(\Leftrightarrow5x+2x^2+2x^3-2x^2\)
\(\Leftrightarrow2x^3+5x\)
Đề 1
- Use different phrasing or notations
- Enter whole words instead of abbreviations
- Avoid mixing mathemaal and other notations
- Check your spelling
- Give your input in English
- Wolfram|Alpha answers specific questions rather than explaining general topicsEnter "2 cups of sugar", not "nutrition information"
- You can only get answers about objective factsTry "highest mountain", not "most beautiful painting"
- Only what is known is known to Wolfram|AlphaAsk "how many men in Mauritania", not "how many monsters in Loch Ness"
- Only public information is availableRequest "GDP of France", not "home phone of Michael Jordan"
Input:
Open code
Inequality plot:
Open code
Alternate forms:
Open code
Open code
Expanded form:
Open code
Solution:
- Approximate form
Open code
Integer solution:
Open code
1) \(\left(5x-4\right)^2-49x^2\)
\(=\left(5x-4\right)^2-\left(7x\right)^2\)
\(=\left(5x-4+7x\right)\left(5x-4-7x\right)\)( hằng đẳng thức số 3)
\(=\left(-2x-4\right)\left(12x-4\right)\)
2)\(\left(3x+1\right)^2-4\left(x-2\right)^2\)
\(=\left(3x+1\right)^2-\left(2\left(x-2\right)\right)^2\)
\(=\left(3x+1\right)^2-\left(2x-2\right)^2\)
\(=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\)
\(=\left(x+5\right)\left(5x-3\right)\)
3) \(9\left(2x+3\right)^2-4\left(x+1\right)^2\)
\(=\left(3\left(2x+3\right)\right)^2-\left(2\left(x+1\right)\right)^2\)
\(=\left(6x+9\right)^2-\left(2x+2\right)^2\)
\(=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\)
\(=\left(4x+7\right)\left(8x+11\right)\)
A=4(3^2+1)(3^4+1)(3^8+1)...(3^64+1)
2A=8(3^2+1)(3^4+1)(3^8+1)...(3^64+1)
2A=(3^2-1)(3^2+1)(3^4+1)(3^8+1)...(3^64+1)
2A=(3^4-1)(3^4+1)(3^8+1)...(3^64+1)
2A=(3^8-1)(3^8+1)....(3^64+1)
2A=(3^16-1)...(3^64+1)
......
2A=(3^64-1)(3^64+1)
2A=3^128-1
A=(3^128-1)/2
=> A>B
\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^{16}-1\right)\left(3^{16}+1\right)...\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^{64}-1\right)\left(3^{64}+1\right)\Leftrightarrow4A=3^{128}-1\Leftrightarrow A=\frac{3^{128}-1}{4}\)
Ta có \(\frac{3^{128}-1}{4}< 3^{128}-1\Rightarrow A< B\)
Lâm Huyền:Bạn sai đề rồi B phải là 3128-1 chứ !
b) Ta có: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2+1\right)\left(2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(=2^{64}-1-2^{64}=-1\)
Đặt A=3(22+1)(24+1)...(264+1) +1
<=> A= (2+1)(22+1)(24+1)...(264+1) +1
<=>(2-1)A=(2-1)(2+1)(22+1)(24+1)...(264+1) +1
<=>1A=(22-1)(22+1)(24+1)...(264+1) +1
<=>A =(24 -1)(24+1)...(264+1) +1
........
<=> A=(264-1)(264+1) +1
<=> A= 2128-1+1 = 2128
Vậy A= 2128