(megabook năm 2018) Một máy phát điện xoay chiều một pha...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

\(f=\dfrac{n.p}{60}=\dfrac{3.1200}{60}=60\left(Hz\right)\)

=> C

2 tháng 6 2016
Ta có: \(\omega=2\pi f=100\pi\left(rad/s\right)\)
Nhiệt lượng
\(Q=I^2Rt=\frac{E^2_0t}{2R}=\frac{\left(\omega NBS\right)^2t}{2R}=\frac{\left(200.100\pi.0,002\right)^2.60}{2.1000}\)\(=474J\)
Đáp án B
24 tháng 7 2016

Tần số góc là: 

\(w=\frac{720.2\pi}{60}=25\pi\)

Suất điện động cực đại là: 

\(\Rightarrow E_0=N.B.S.w=200\frac{25.10^{-3}}{\pi}.4=500V\)

Suất điện động hiệu dụng là: 

\(E=\frac{E_0}{\sqrt{2}}=250\sqrt{2V}\)

26 tháng 10 2015

Ban đầu (t=0) dòng điện có giá trị cực đại. Để dòng điện giảm về 0 thì mất thời gian T/4

Suy ra T/4 = 0,004

⇒ T = 0,016s

Tần số f = 1/T = 62,5Hz

26 tháng 10 2015

Chọn A.

15 tháng 1 2015

Áp dụng\(\begin{cases}f=np\\E_0=\omega NBS\end{cases}\)\(\Rightarrow\begin{cases}f=np\\E=\omega.k\end{cases}\)(n là số vòng quay của rôto/s, k là hệ số tỉ lệ.

Theo giả thiết ta có:

\(\begin{cases}50=np\\60=\left(n+10\right)p\end{cases}\)\(\Rightarrow\begin{cases}n=50\\p=1\end{cases}\)

\(\begin{cases}E=100\pi k\\E+40=120\pi k\end{cases}\)\(\Rightarrow\pi k=2\)

Nếu tốc độ tăng thêm 60 vòng/phút = 10 vòng/s thì \(n=50+10+10=70\)vòng/s

Tần số: \(f=np=70.1=70\) Hz

Suất điện động hiệu dụng: \(E=140\pi k=140.2=280\)V

Đáp số: \(E=280V\)

 

5 tháng 12 2016

sao 60 vòng/phút lại = 10vòng/s dc ạ

5 tháng 7 2016

vật lý phổ thông 10-11-12 Mạch điện xoay chiều R, L, C mắc nối tiếp

5 tháng 7 2016

B,1/π (H).

23 tháng 8 2016

Ta có:
f = 2 f_0 = 100 (Hz)
l = \frac{k\lambda }{2} = \frac{kv}{2 f}\Rightarrow v = \frac{2 l f}{k}  ( vì vật được kích thích bằng nam châm) 
= \frac{2.0,9 .100}{6} = 30 (m/s)

20 tháng 8 2016

Ta có:

\(P=\dfrac{U_{1}^{2}}{Z_{1}^{2}}R\)

\(4P=\dfrac{U_{2}^{2}}{Z_{2}^{2}}R\)

\(\Rightarrow \dfrac{P}{4P}=\left( \dfrac{U_{1}}{U_{2}} \right)^{2}\left( \dfrac{Z_{2}}{Z_{1}} \right)^{2}\)

\(\Leftrightarrow \dfrac{1}{4}=\left(\dfrac{n_{1}}{n_{2}} \right)^{2}\left(\dfrac{Z_{2}}{Z_{1}} \right)^{2}\rightarrow Z_{2}=Z_{1}\)

Ta nghĩ đến bài toán f biến thiên có 2 giá trị của f mạch cho cùng 1 tổng trở.\(\Rightarrow n_{0}=\sqrt{n_{1}n_{2}}=\sqrt{2}n \)

Vậy khi roto quay với tốc độ \(\sqrt{2}n\) mạch xảy ra cộng hưởng.

Công suất: \(P_0=\dfrac{U_{0}^{2}}{R}\)

Lại có:

\(P=\dfrac{U_{1}^{2}}{Z_{1}^{2}}R=\dfrac{U_{1}^{2}}{2R^{2}}R=\dfrac{U_{1}^{2}}{2R}\) (Do \(Z_1=\sqrt 2.R\)

\(\Rightarrow \dfrac{P}{P_{0}}=\dfrac{U_{1}^{2}}{2U_{0}^{2}}=\dfrac{1}{2}\left(\dfrac{n_{1}}{n_{0}} \right)^{2}=\dfrac{1}{4} \Rightarrow P_{0}=4P\)

Vậy: \(P_0=4P\)

20 tháng 8 2016

\(U_0=\omega\phi\)

\(P=I^2R=\left(\frac{U_0}{Z\sqrt{2}}\right)^2R=\frac{\omega^2\phi^2R}{2\left(R^2\left(\omega L-\frac{1}{\omega c}\right)^2\right)}\)

\(=\frac{\phi^2R}{2\left(\frac{R^2}{\omega^2}+\left(L-\frac{1}{\omega^2c}\right)^2\right)}=\frac{\phi^2R}{2\left(\frac{1}{\omega^4C^2}+\frac{R^2-2L}{\omega^2}+L^2\right)}\)

Do đó: \(\phi\) không đổi. Đặt : \(\frac{1}{\omega^2}=x\)

Xét f (x) \(=\frac{x^2}{C^2}+\left(R^2-2L\right)x+2L^2\)

=> P_max \(\Leftrightarrow x_0=\frac{2L-R^2}{2C^2}\)

Do P phụ thuộc hàm bậc 2 nên

\(P_1=P_2\Rightarrow x_1+x_2=2x_0\Leftrightarrow\frac{1}{\omega^2_1}+\frac{1}{\omega^2_2}=\frac{2}{\omega^2_0}\)

Mặt khác, tốc độ quay của rôto tỉ lệ thuận với tần số góc nên

\(\frac{1}{n^2_1}+\frac{1}{n^2_2}+\frac{1}{n^2_0}\Leftrightarrow n_0=2\frac{n^2_1n^2_2}{n^2_1+n^2_2}\)

23 tháng 8 2016

Ta có: T = \frac{1}{50} = 0,02 (s)
Trong 1 (s) ứng với 50 chu kì mà mỗi chu kì có độ lớn 1 (A) 4 lần
⇒ 50 chu lì có 50.4 = 200 (lần)

23 tháng 8 2016
 
T dòng điện đổi chiều 2 lần
T=1f=0,02T=1f=0,02 
t =1s = 50T 
trị tuyệt đối = 1 -- I = 1 và I = -1 
--> có 200 lần