K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(M-\dfrac{3}{2}=\dfrac{x+7}{\sqrt{x}+3}-\dfrac{3}{2}\)

\(=\dfrac{2x+14-3\sqrt{x}-9}{2\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2x-3\sqrt{x}+5}{2\left(\sqrt{x}+3\right)}>0\)

=>M>3/2

b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)

\(=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\cdot\sqrt{\dfrac{16}{\sqrt{x}+3}\cdot\left(\sqrt{x}+3\right)}-6=2\cdot4-6=2\)

Dấu = xảy ra khi (căn x+3)^2=16

=>căn x+3=4

=>x=1

23 tháng 10 2021

a) ĐKXĐ: \(x>0\)

\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\)

\(=x+\sqrt{x}-2\sqrt{x}-1+1=x-\sqrt{x}\)

\(A=x-\sqrt{x}=2\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)(do \(\sqrt{x}+1\ge1>0\))

b) \(A=x-\sqrt{x}=\sqrt{x}\left(\sqrt{x}-1\right)>0\)(do \(x>1\))

\(\Leftrightarrow A=x-\sqrt{x}=\left|A\right|\)

c) \(A=x-\sqrt{x}=\left(x-\sqrt{x}+\dfrac{1}{4}\right)-\dfrac{1}{4}\)

\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(minA=-\dfrac{1}{4}\Leftrightarrow\sqrt[]{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)

23 tháng 10 2021

\(a,A=\dfrac{x\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\left(x>0\right)\\ A=\dfrac{x\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-2\sqrt{x}-1+1\\ A=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\\ A=2\Leftrightarrow x-\sqrt{x}-2=0\\ \Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow\sqrt{x}=2\left(\sqrt{x}>0\right)\\ \Leftrightarrow x=4\left(tm\right)\)

\(b,x>1\Leftrightarrow\sqrt{x}-1>0\\ \Leftrightarrow\left|A\right|=\left|x-\sqrt{x}\right|=\left|\sqrt{x}\left(\sqrt{x}-1\right)\right|=\sqrt{x}\left(\sqrt{x}-1\right)=A\left(\sqrt{x}>0\right)\)

\(c,A=x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\\ A_{min}=-\dfrac{1}{4}\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)

a: M=A:B

\(=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)

b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)

=>\(M=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)

Dấu = xảy ra khi (căn x+3)^2=16

=>căn x+3=4

=>x=1

11 tháng 9 2023

\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\left(ĐKXĐ:x\ge0;x\ne9\right)\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\sqrt{x}-3}{x-9}\)

\(b,M=P:Q\)

\(=\dfrac{-3\sqrt{x}-3}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

Ta thấy: \(\sqrt{x}\ge0\forall x\)

\(\Rightarrow\sqrt{x}+3\ge3\forall x\)

\(\Rightarrow\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{3}\forall x\)

\(\Rightarrow\dfrac{-3}{\sqrt{x}+3}\ge\dfrac{-3}{3}=-1\)

hay \(M\ge-1\)

#Toru

29 tháng 8 2021

a) P < 1; P < 2

29 tháng 8 2021

b) P < 1 --> P(1 - P) > 0

--> P > P^2

17 tháng 7 2021

a) \(M=\left(\dfrac{2x+3\sqrt{x}}{x\sqrt{x}+1}+\dfrac{1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\left(x>0\right)\)

\(=\left(\dfrac{2x+3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{2x+3\sqrt{x}+1-\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{x+4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{x-\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+4}{\sqrt{x}+1}\)

b) Ta có: \(\sqrt{x}+4>\sqrt{x}+1\Rightarrow\dfrac{\sqrt{x}+4}{\sqrt{x}+1}>1\)

c) \(\dfrac{\sqrt{x}+4}{\sqrt{x}+1}=1+\dfrac{3}{\sqrt{x}+1}\)

Ta có: \(\left\{{}\begin{matrix}3>0\\\sqrt{x}+1>0\end{matrix}\right.\Rightarrow1+\dfrac{3}{\sqrt{x}+1}>1\Rightarrow M>1\)

Lại có: \(\sqrt{x}+1>1\left(x>0\right)\Rightarrow\dfrac{3}{\sqrt{x}+1}< 3\Rightarrow1+\dfrac{3}{\sqrt{x}+1}< 4\Rightarrow M< 4\)

\(\Rightarrow1< M< 4\Rightarrow M\in\left\{2;3\right\}\)

\(M=2\Rightarrow1+\dfrac{3}{\sqrt{x}+1}=2\Rightarrow\dfrac{3}{\sqrt{x}+1}=1\Rightarrow\sqrt{x}+1=3\)

\(\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

\(M=3\Rightarrow1+\dfrac{3}{\sqrt{x}+1}=3\Rightarrow\dfrac{3}{\sqrt{x}+1}=2\Rightarrow2\sqrt{x}+2=3\)

\(\Rightarrow2\sqrt{x}=1\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)

NV
20 tháng 3 2022

ĐKXĐ: \(x\ge-2;x\ne-1\)

\(M=\dfrac{x^2-2x}{x^3+1}+\dfrac{1}{2}\left(\dfrac{1-\sqrt{x+2}+1+\sqrt{x+2}}{1-\left(x+2\right)}\right)\)

\(=\dfrac{x^2-2x}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}=\dfrac{x^2-2x-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=-\dfrac{1}{x^2-x+1}\)

\(M=-\dfrac{1}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge-\dfrac{1}{\dfrac{3}{4}}=-\dfrac{4}{3}\)

\(M_{min}=-\dfrac{4}{3}\) khi \(x=\dfrac{1}{2}\)

a) Ta có: \(M=\dfrac{x-7}{x-4\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-3}\)

\(=\dfrac{x-7+\sqrt{x}-3-\sqrt{x}+1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\)

b) Để \(M>\dfrac{3}{4}\) thì \(M-\dfrac{3}{4}>0\)

\(\Leftrightarrow\dfrac{\sqrt{x}+3}{\sqrt{x}-1}-\dfrac{3}{4}>0\)

\(\Leftrightarrow\dfrac{4\sqrt{x}+12-3\sqrt{x}+3}{4\left(\sqrt{x}-1\right)}>0\)

\(\Leftrightarrow\sqrt{x}-1>0\)

\(\Leftrightarrow x>1\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>1\\x\ne9\end{matrix}\right.\)

21 tháng 7 2021

em cảm ơn ạ vui

1 tháng 6 2021

\(M=\dfrac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)Áp dụng Cô si có

\(M\ge2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}=10\)

Dấu "=" \(\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\leftrightarrow x=4\)

Vậy GTNN của M = 10 <=> x = 4

1 tháng 6 2021

\(M=\dfrac{\left(x+6\sqrt{x}+9\right)+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)

Do \(\sqrt{x}\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}+3>0\\\dfrac{25}{\sqrt{x}+3}>0\end{matrix}\right.\)

Áp dụng bđt cô-si ta có: 

\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right)\cdot\dfrac{25}{\sqrt{x}+3}}=2\sqrt{25}=10\)

hay \(M\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\Leftrightarrow x=4\)

Vậy GTNN của M = 10 khi x = 4