\(M=\dfrac{x+7}{\sqrt{x}+3}\)

a) So sánh M với 3/2

b) Tìm GTNN của M

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(M-\dfrac{3}{2}=\dfrac{x+7}{\sqrt{x}+3}-\dfrac{3}{2}\)

\(=\dfrac{2x+14-3\sqrt{x}-9}{2\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2x-3\sqrt{x}+5}{2\left(\sqrt{x}+3\right)}>0\)

=>M>3/2

b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)

\(=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\cdot\sqrt{\dfrac{16}{\sqrt{x}+3}\cdot\left(\sqrt{x}+3\right)}-6=2\cdot4-6=2\)

Dấu = xảy ra khi (căn x+3)^2=16

=>căn x+3=4

=>x=1

a: \(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

c: Để A=1/2 thì \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{1}{2}\)

=>\(-10\sqrt{x}+4=\sqrt{x}+3\)

=>x=1/121

d: \(A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)

\(=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}< =0\)

=>A<=2/3

AH
Akai Haruma
Giáo viên
2 tháng 12 2017

1)

Điều kiện: \(x\geq \frac{-1}{2}\)

Bình phương hai vế:

\(x^2+4=(2x+1)^2=4x^2+4x+1\)

\(\Leftrightarrow 3x^2+4x-3=0\)

\(\Leftrightarrow x=\frac{-2\pm \sqrt{13}}{3}\)

Do \(x\geq -\frac{1}{2}\Rightarrow x=\frac{-2+\sqrt{13}}{3}\) là nghiệm duy nhất của pt.

2)

a) \(x^2+x+12\sqrt{x+1}=36\) (ĐK: \(x\geq -1\) )

\(\Leftrightarrow (x^2+x-12)+12(\sqrt{x+1}-2)=0\)

\(\Leftrightarrow (x-3)(x+4)+\frac{12(x-3)}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow (x-3)\left[x+4+\frac{12}{\sqrt{x+1}+2}\right]=0\)

Do \(x\geq -1\Rightarrow x+4+\frac{12}{\sqrt{x+1}+2}\geq 3+\frac{12}{\sqrt{x+1}+2}>0\)

Do đó \(x-3=0\Leftrightarrow x=3\) (thỏa mãn)

Vậy pt có nghiệm x=3

b) Đặt \(\left\{\begin{matrix} \sqrt{x^2+7}=a\\ x+4=b\end{matrix}\right.\)

PT tương đương:

\(x^2+7+4(x+4)-16=(x+4)\sqrt{x^2+7}\)

\(\Leftrightarrow a^2+4b-16=ab\)

\(\Leftrightarrow (a-4)(a+4)-b(a-4)=0\)

\(\Leftrightarrow (a-4)(a+4-b)=0\)

+ Nếu \(a-4=0\Leftrightarrow \sqrt{x^2+7}=4\Leftrightarrow x^2=9\Leftrightarrow x=\pm 3\) (thỏa mãn)

+ Nếu \(a+4-b=0\Leftrightarrow a=b-4\)

\(\Leftrightarrow \sqrt{x^2+7}=x\)

\(\Rightarrow x\geq 0\). Bình phương hai vế thu được: \(x^2+7=x^2\Leftrightarrow 7=0\) (vô lý)

Vậy pt có nghiệm \(x=\pm 3\)

AH
Akai Haruma
Giáo viên
2 tháng 12 2017

Câu 3:

Ta có \(M=\frac{x^2+2000x+196}{x}\)

\(\Leftrightarrow M=x+2000+\frac{196}{x}\)

Áp dụng BĐT AM-GM ta có: \(x+\frac{196}{x}\geq 2\sqrt{196}=28\)

\(\Rightarrow M=x+\frac{196}{x}+2000\geq 28+2000=2028\)

Vậy M (min) =2028. Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{196}{x}\\ x>0\end{matrix}\right.\Rightarrow x=14\)

9 tháng 11 2017

Câu 3

a, ĐKXĐ: x>0, x\(\ne\)4

M=( \(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\)). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

b, Thay x= \(6+4\sqrt{2}\) ( x>0, x\(\ne\)4) ta có:

M= \(\dfrac{\sqrt{6+4\sqrt{2}}}{\sqrt{6+4\sqrt{2}}-2}\)

= \(\dfrac{\sqrt{\left(\sqrt{2}+2\right)^2}}{\sqrt{\left(\sqrt{2}+2\right)^2-2}}\) = \(\dfrac{\sqrt{2}+2}{\sqrt{2}+2-2}\)

= \(\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)}{\sqrt{2}}\) = \(1+\sqrt{2}\)

Vậy khi x= \(6+4\sqrt{2}\) thì M= \(1+\sqrt{2}\)

c, Để M<1 <=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}< 1\)

<=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-2}< 0\)

<=> \(\dfrac{2}{\sqrt{x}-2}< 0\)

Vì 2>0 <=> \(\sqrt{x}-2< 0\)

<=> \(\sqrt{x}< 2\)

<=> x<4

Vậy để M<1 thì 0<x<4

<=>

9 tháng 11 2017

Câu 2

a, \(\sqrt{3x+2}=5\) (x\(\ge\dfrac{-2}{3}\))

<=> \(\sqrt{3x+2}=\sqrt{25}\)

<=> 3x+2=25

<=> 3x= 23

<=> x=\(\dfrac{23}{3}\)

Vậy S= \(\left\{\dfrac{23}{3}\right\}\)

27 tháng 10 2022

1: Sửa đề: \(B=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)

2: Để B<=-1/2 thì B+1/2<=0

=>-3/căn x+3+1/2<=0

=>-6+căn x+3<=0

=>căn x<=3

=>0<x<9

3: Để B là số nguyên thì \(\sqrt{x}+3=3\)

=>x=0

bn rút gọn lại dc bao nhiêu
mình lười rút gọn quá

6 tháng 8 2017

\(\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

chắc luôn bạn... vì mk làm đi làm lại rồi

19 tháng 11 2022

a: \(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)

b: Khi x=7-4căn 3 thì \(P=\dfrac{7-4\sqrt{3}+16}{2-\sqrt{3}+3}\simeq4.92\)

d: Để P=7 thì \(x+16=7\sqrt{x}+21\)

\(\Leftrightarrow x-7\sqrt{x}-5=0\)

hay \(x=\dfrac{59+7\sqrt{69}}{2}\)

a: \(P=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)

b: Khi \(x=7-4\sqrt{3}\) vào P, ta được:

\(P=\dfrac{7-4\sqrt{3}+16}{2-\sqrt{3}+3}=\dfrac{23-4\sqrt{3}}{5-\sqrt{3}}\)

a: ĐKXĐ: x>=0; x<>1

\(B=\dfrac{\sqrt{x}\left(1-x\right)^2}{x+1}:\left[\left(x-2\sqrt{x}+1\right)\left(x+2\sqrt{x}+1\right)\right]\)

\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{x+1}\cdot\dfrac{1}{\left(x-1\right)^2}=\dfrac{\sqrt{x}}{x+1}\)

b: Để B=2/5 thì \(\dfrac{\sqrt{x}}{x+1}=\dfrac{2}{5}\)

\(\Leftrightarrow2x-5\sqrt{x}+2=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

=>x=1/4 hoặc x=4

c: Thay \(x=12-6\sqrt{3}=\left(3-\sqrt{3}\right)^2\) vào A, ta được:

\(A=\dfrac{3-\sqrt{3}}{12-6\sqrt{3}+1}=\dfrac{3-\sqrt{3}}{13-6\sqrt{3}}=\dfrac{21+5\sqrt{3}}{61}\)