\(M=\dfrac{3x^2+3}{x^4+2x^3+7x^2+2x+6}\)

a)Rút gọn M

b)Tìm GTLN của M

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2022

: a: \(M=\dfrac{3\left(x^2+1\right)}{x^4+x^2+2x^3+2x+6x^2+6}=\dfrac{3\left(x^2+1\right)}{\left(x^2+1\right)\left(x^2+2x+6\right)}=\dfrac{3}{x^2+2x+6}\)

b:x^2+2x+6=(x+1)^2+5>=5

=>M<=3/5

Dấu = xảy ra khi x=-1

26 tháng 11 2018

a, \(M=\frac{3\left(x^2+1\right)}{\left(x^4+x^2\right)+\left(2x^3+2x\right)+\left(6x^2+6x\right)}=\frac{3\left(x^2+1\right)}{x^2\left(x^2+1\right)+2x\left(x^2+1\right)+6\left(x^2+1\right)}=\frac{3\left(x^2+1\right)}{\left(x^2+2x+6\right)\left(x^2+1\right)}=\frac{3}{x^2+2x+6}\)

b, ta có: \(M=\frac{3}{x^2+2x+6}=\frac{3}{\left(x^2+2x+1\right)+5}=\frac{3}{\left(x+1\right)^2+5}\)

Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+5\ge5\Rightarrow\frac{1}{\left(x+1\right)^2+5}\le\frac{1}{5}\Rightarrow M=\frac{3}{\left(x+1\right)^2+5}\le\frac{3}{5}\)

Dấu "=" xảy ra <=>x+1=0 <=> x=-1

27 tháng 11 2017

a) \(A = \frac{2x^2 - 16x+43}{x^2-8x+22}\) = \(\frac{2(x^2-8x+22)-1}{x^2-8x+22}\) = \(2 - \frac{1}{x^2-8x+22}\)

Ta có : \(x^2-8x+22 \) = \(x^2-8x+16+6 = ( x-4)^2 +6 \)

\((x-4)^2 \ge 0 \) với \( \forall x\in R\) Nên \(( x-4)^2 +6 \ge 6 \)

\(\Rightarrow \) \(x^2-8x+22 \) \( \ge 6\)\(\Rightarrow \) \(\frac{1}{x^2-8x+22} \) \(\le \frac{1}{6}\) \(\Rightarrow \) - \(\frac{1}{x^2-8x+22} \) \(\ge - \frac{1}{6}\)

\(\Rightarrow \) A = \(2 - \frac{1}{x^2-8x+22}\) \( \ge 2-\frac{1}{6}\) = \(\frac{11}{6}\) Dấu "=" xảy ra khi và chỉ khi x=4

Vậy GTNN của A = \(\frac{11}{6}\) khi và chỉ khi x=4

10 tháng 1 2020

Phân thức đại số

11 tháng 1 2020

bạn có thể giải mấy câu kia luôn

8 tháng 12 2017

a) Giá trị của phân thức  M được xác định khi:

\(x^2+2x-8\ne0\)

\(\Leftrightarrow\left(x^2+2x+1\right)-9\ne0\)

\(\Leftrightarrow\left(x+1\right)^2-9\ne0\)

\(\Leftrightarrow\left(x-2\right)\left(x+4\right)\ne0\)

\(\Rightarrow x-2\ne0\)và \(x+4\ne0\), do đó: \(x\ne2\)và \(x\ne4\)

Với: ĐK: \(x\ne2\)và \(x\ne-4\)thì giá trị của phân thức M được xác định.

P/s: Mình chỉ giải được phần a) thôi xin lỗi bạn nha!

6 tháng 12 2018

ĐẬP A CỦA MK LÀ

NẾU ĐÚNG HÃY TÍCH CHO MK MHA

a/ giá trị phân thức M được xác ding khi

x^2 + 2x - 8 khác 0  

< = > ( x^2 - 2x = 1 ) - 9 khác 0

< = >( x + 1 )^ 2 - 9 khác 0

< => ( x - 2 ) . ( x + 4 ) khac 0 

=> x - 2 khác 0 và x + 4 khác 0 => x khác 2 và x khác 4

ta có ding nghĩa x khác 2 và x khác 4 thì giá trị phân thức M được xác ding

CHÚC BẠN HC TỐT NHA 

xin lỗi ban nha mk chỉ giải đc phần a thôi

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)

27 tháng 7 2017

1) ta có \(\dfrac{2x-2}{5}=3x\Leftrightarrow2x-2=3x.5\Leftrightarrow2x-2=15x\Leftrightarrow13x=-2\Leftrightarrow x=\dfrac{-2}{13}\)

thay \(x=\dfrac{-2}{13}\) và phương trình sau

ta có \(5.\dfrac{-2}{13}+m=4.\dfrac{-2}{13}+\left(1-m\right)\)

\(\Leftrightarrow\dfrac{-10}{13}+m=\dfrac{-8}{13}+1-m\Leftrightarrow2m=\dfrac{-8}{13}+1+\dfrac{10}{13}\)

\(\Leftrightarrow2m=\dfrac{15}{13}\Leftrightarrow m=\dfrac{15}{26}\) vậy \(x=\dfrac{-2}{13};m=\dfrac{15}{26}\)

24 tháng 11 2018

\(a)\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(3x-1)(x-3)^2}(ĐK:x\ne3,x\ne\frac{1}{3})\)

                                                \(=\frac{2x+5}{3x-1}\)

Còn bài b bạn tự làm nhé

24 tháng 11 2018

Điều kiện: \(x\ne\left\{-1;-2;-5\right\}\)

\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)

\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)

\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]}\)

\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\)

Điều kiện: \(x\ne\left\{3;\frac{1}{3}\right\}\)

\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)

\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)

\(=\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)

\(=\frac{2x^2-x-15}{3x^2-10x+3}=\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)

\(=\frac{\left(2x+5\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)}=\frac{2x+5}{3x-1}\)

19 tháng 12 2018

a) \(x^3-3x^2+5x-15\ne0\)

\(\Rightarrow x^2\left(x-3\right)+5\left(x-3\right)\ne0\)

\(\Rightarrow\left(x-3\right)\left(x^2+5\right)\)

=> ĐKXĐ: x khác 3

b) \(D=\dfrac{1}{5}\)

\(\Rightarrow\dfrac{2x-6}{\left(x-3\right)\left(x^2+5\right)}=\dfrac{1}{5}\)

\(\Rightarrow\dfrac{2\left(x-3\right)}{\left(x-3\right)\left(x^2+5\right)}=\dfrac{1}{5}\)

\(\Rightarrow\dfrac{2}{x^2+5}=\dfrac{1}{5}\)

\(\Rightarrow x^2+5=2:\dfrac{1}{5}\)

\(\Rightarrow x^2+5=10\)

\(\Rightarrow x^2=10-5=5\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)

c) \(D=\dfrac{1}{x^2+1}\)

\(\Rightarrow\dfrac{2x-6}{\left(x-3\right)\left(x^2+5\right)}=\dfrac{1}{x^2+1}\)

\(\Rightarrow\dfrac{2\left(x-3\right)}{\left(x-3\right)\left(x^2+5\right)}=\dfrac{1}{x^2+1}\)

\(\Rightarrow\dfrac{2}{x^2+5}=\dfrac{1}{x^2+1}\)

\(\Rightarrow x^2+5=2\left(x^2+1\right)\)

\(\Rightarrow x^2+5=2x^2+2\)

\(\Rightarrow x^2+5-2x^2-2=0\)

\(\Rightarrow-x^2+3=0\)

\(\Rightarrow x^2=3\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

20 tháng 12 2018

Nếu câu a bạn rút gọn trước thì các câu làm sẽ dễ dàng hơn đó, thk