Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: AD=ED(Hai cạnh tương ứng)
Ta có : \(BE^2-EC^2=\left(BD^2-DE^2\right)-\left(DC^2-DE^2\right)\)
\(=BD^2-DC^2=BD^2-AD^2=AB^2\)
Vậy nên \(BE^2-EC^2=AB^2\)
a) Xét ΔAKB và ΔAKC có:
AB=AC(gt)
AK:cạnh chung
BK=CK(gt)
=> ΔAKB=ΔAKC(c.c.c)
=> AKBˆ=AKCˆAKB^=AKC^
Mà: AKBˆ+AKCˆ=180oAKB^+AKC^=180o
=> AKBˆ=AKCˆ=90oAKB^=AKC^=90o
=> AK⊥BCAK⊥BC
b) Vì: EC⊥BC(gt)EC⊥BC(gt)
Mad: AK⊥BC(cmt)AK⊥BC(cmt)
=> EC//AK
Tự kẻ hình
a) - Vì tam giác ABC vuông tại A (gt)
=> tam giác ABD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác EBD vuông tại E (tc)
- Xét tam giác vuông ABD và tam giác vuông EBD, có:
+ Chung BD
+ góc ABD = góc EBD ( BD là p/giác góc ABC)
=> tam giác vuông ABD = tam giác vuông EBD (cạnh huyền - góc nhọn)
b) - Vì tam giác vuông ABD = tam giác vuông EBD (cmt)
=> AD = ED ( 2 cạnh tương ứng )
- Vì tam giác ABC vuông tại A (gt)
=> tam giác AMD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác ECD vuông tại E (tc)
- Xét tam giác vuông AMD và tam giác vuông ECD, có:
+ AD = ED (cmt)
+ góc ADM = góc EDM (đối đỉnh)
=> tam giác vuông AMD = tam giác vuông ECD (cạnh góc vuông - góc nhọn kề)
=> DM = DC (2 cạnh tương ứng)
c) - Vì tam giác vuông AMD = tam giác vuông ECD (cmt)
=> AM = EC (2 cạnh tương ứng)
- Xét tam giác vuông AMD, có
AD + AM > DM (bất đẳng thức tam giác)
Mà AM = EC (cmt)
=> AD + EC > DM (đpcm)
a: Xét ΔEBD vuông tại E và ΔFCD vuông tại F có
BD=CD
\(\widehat{B}=\widehat{C}\)
Do đó: ΔEBD=ΔFCD
Suy ra: EB=FC
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là trung trực của BC
c: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
DE=DF
Do đó: ΔAED=ΔAFD
d: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
Mình làm hơi tắt chút do ngại trình bầy cái định lý pi - ta - go ở tam giác BDE