Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://taimienphi.vn/download-70-bai-tap-toan-nang-cao-lop-7-37125
link này
#Châu's ngốc
1) ke AE vgoc BC; AE catBD tai M
ke AF vgoc BD
de dang c/m tgAFD vuong can taiF=>AD=AFcan2
tgAFM vuong taiF va gMAF=60=>AM=2AF
tgAMB can taiM=>AM=BM
tgBMC deu=>BC=BM=CM
vay AD=(AM/2)can2=(BC/2)can2=can2.
2)???
Bạn ơi đề yêu cầu là : Chứng minh rằng : Tam giác xyz là TAM GIÁC CÂN ?
B1: Giải:
Vì DE song song với BC => góc DIB= góc IBC (SLT).Mà góc IBC=góc DBI (BI là (p/g của góc ABC ) => góc DBI=góc DIB theo định lý => tam DIB cân tại D=>DB=DI.
Vì DE song song với BC=>góc EIC = góc ICB (SLT). Mà góc ECI =góc ICB ( CI là p/g của của góc ECB) theo định lý => tam giác IEC cân tại E=>EI=EC.
Vì DE=DB+IE. Mà DI = DB;IE=EC=>DE=DB+CE
Vậy : DE=DB+CE
a) xét tam giác ABD và tam giác BMD có:
góc B1 = góc B2 (gt)
BD chung
góc A = góc M = 900
=> tam giác ABD = tam giác BMD (g.c.c)
=> AB = BM (cạnh tương ứng)
=> tam giác ABM cân tại B
b) bó tay
Bài 6:
a) Xét ΔNMD và ΔNED có
ND chung
\(\widehat{MND}=\widehat{END}\)(ND là tia phân giác của \(\widehat{NME}\))
NM=NE(gt)
Do đó: ΔNMD=ΔNED(c-g-c)
Suy ra: \(\widehat{NMD}=\widehat{NED}\)(hai góc tương ứng)
mà \(\widehat{NMD}=90^0\)(gt)
nên \(\widehat{NED}=90^0\)
hay DE\(\perp\)NP(đpcm)
b) Ta có: ΔNMD=ΔNED(cmt)
nên DM=DE(Hai cạnh tương ứng)
Ta có: NM=NE(gt)
nên N nằm trên đường trung trực của ME(1)
Ta có: DM=DE(cmt)
nên D nằm trên đường trung trực của ME(2)
Từ (1) và (2) suy ra ND là đường trung trực của ME
nốt đi chứ