Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BK = CH (cm câu b) mà BE = EK = BK/2 (E là trung điểm BK) ; FC = CH/2 (F là trung điểm HC) => BE = EK = FC
\(\text{ΔBME,ΔCMF}\) có BM = CM ; BE = CF (cmt) ; \(\widehat{MBE}=\widehat{MCF}\)= (2 góc slt của BK // CH)
\(\text{⇒ΔBME = ΔCMF (c.g.c)}\) => ME = MF (2 cạnh tương ứng) ; \(\widehat{\text{BME}}=\widehat{\text{CMF}}\)= (2 góc tương ứng)
mà \(\widehat{\text{BME}}+\widehat{\text{EMC}}\) = 180 0 (kề bù)
\(\text{⇒ }\widehat{\text{CMF}}+\widehat{\text{EMC}}\)= 180 0
=> E,M,F thẳng hàng
Mình cũng có thể suy ra MBE a MCF bằng nhau nhờ câu b phải không bạn Bùi Nguyễn Việt Anh?
a) Xét ΔBHM vuông tại H và ΔCKM vuông tại K có
MB=MC(M là trung điểm của BC)
\(\widehat{BMH}=\widehat{CMK}\)(hai góc đối đỉnh)
Do đó: ΔBHM=ΔCKM(cạnh huyền-góc nhọn)
⇒BH=CK(hai cạnh tương ứng)
b) Vì AB//CD(gt)
nên \(\widehat{ABM}=\widehat{DCM}\)(hai góc so le trong)
Xét ΔABM và ΔDCM có
\(\widehat{ABM}=\widehat{DCM}\)(cmt)
BM=CM(M là trung điểm của BC)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔABM=ΔDCM(c-g-c)
⇒AM=DM(hai cạnh tương ứng)
Xét ΔAMC và ΔDMB có
AM=DM(cmt)
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔAMC=ΔDMB(c-g-c)
⇒\(\widehat{CAM}=\widehat{BDM}\)(hai góc tương ứng)
mà \(\widehat{CAM}\) và \(\widehat{BDM}\) là hai góc ở vị trí so le trong
nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)
Bổ sung thêm ý c là : Chứng minh: HK = AM và BN vuông góc với NC
a) Xét t/g CKM vuông tại K và t/g BHM vuông tại H có:
CM = BM (gt)
CMK = BMH ( đối đỉnh)
Do đó, t/g CKM = t/g BHM ( cạnh huyền - góc nhọn)
=> KM = HM (2 cạnh tương ứng)
=> M là trung điểm HK (đpcm)
b) Xét t/g CMH và t/g BMK có:
HM = KM (câu a)
CMH = BMK ( đối đỉnh)
CM = BM (gt)
Do đó, t/g CMH = t/g BMK (c.g.c)
=> CHM = BKM (2 góc tương ứng)
Mà CHM và BKM là 2 góc ở vị trí so le trong nên HC // BK (đpcm)
Câu 1 (Bạn tự vẽ hình giùm)
a) Mình xin chỉnh lại đề một chút: \(\Delta ABD=\Delta ACD\)
\(\Delta ABD\)và \(\Delta ACD\)có: AB = AC (\(\Delta ABC\)cân tại A)
BD = DC (D là trung điểm của BC)
Cạnh AD chung
=> \(\Delta ABD=\Delta ACD\) (c. c. c) (đpcm)
b) Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BAD}=\widehat{DAC}\)(hai góc tương ứng) => AD là tia phân giác của \(\widehat{BAC}\)(đpcm)
c) Mình xin chỉnh lại đề một chút: AD \(\perp\)BC tại D
Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BDA}=\widehat{CDA}\)(hai góc tương ứng)
Mà \(\widehat{BDA}+\widehat{CDA}\)= 180o (kề bù)
=> \(\widehat{BDA}=\widehat{CDA}=\frac{180^o}{2}\)= 90o => AD \(\perp\)BC tại D (đpcm)