Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử tồn tại \(f\left(7\right)=72\) và \(f\left(3\right)=42\). Ta có:
\(\left\{{}\begin{matrix}f\left(7\right)=a.7^3+2.b.7^2+3.c.7+4d=343a+98b+21c+4d\\f\left(3\right)=a.3^3+2.b.3^3+3.c.3+4d=27a+18b+9c+4d\end{matrix}\right.\)
\(\Rightarrow f\left(7\right)+f\left(3\right)=\left(343a+27a\right)+\left(98b+18b\right)+\left(21c+9c\right)+\left(4d+4d\right)=370a+116b+30c+8d⋮̸2\)
Mà \(f\left(7\right)+f\left(3\right)=72+42=112⋮2\)
Từ hai điều trên suy ra giả thiết sai.
Vậy không thể tồn tại \(f\left(7\right)=72\) và \(f\left(3\right)=42\)

\(f\left(x\right)=ax^3+2bx^2+3cx+4d\)
\(f\left(7\right)=a\cdot7^3+2b\cdot7^2+3c\cdot7+4d\)
\(=343a+98b+21c+4d\)
\(f\left(3\right)=a\cdot3^3+2b\cdot3^2+3c\cdot3+4d\)
\(=27a+18b+9c+4d\)
\(f\left(7\right)+f\left(3\right)=343a+98b+21c+4d+27a+18b+9c+4d\)
\(=370a+116b+30c+8d\)
\(=2\left(185a+58b+15c+4d\right)⋮2\)
mà f(7)+f(3)=72+42=114 chia hết cho 2
nên có tồn tại f(7)=72 và f(3)=42 nha bạn

Lời giải:
Giả sử tồn tại điều như đề nói.
$f(7)=343a+98b+21c+4d=72$
$f(3)=27a+18b+9c+4d=42$
$\Rightarrow f(7)-f(3)=316a+80b+12c=30$
$\Rightarrow 4(79a+20b+3c)=30$
$\Rightarrow 79a+20b+3c=\frac{30}{4}\not\in\mathbb{Z}$
(vô lý vì $a,b,c$ là các số nguyên)
Do đó điều giả sử là sai, tức là không tồn tại $f(7)=72$ và $f(3)=42$

Bài 4:
\(f\left(5\right)-f\left(4\right)=2019\)
=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)
=>\(61a+9b+21c=2019\)
\(f\left(7\right)-f\left(2\right)\)
\(=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c\)
\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số

Thay x = 0 vào x . f(x + 1) = (x + 2) . f(x) được 0 . f(0 + 1) = 2 . f(0) hay f(0) = 0
Suy ra x = 0 là một nghiệm của f(x)
Thay x = -2 vào x . f(x + 1) = (x + 2) . f(x) được (-2) . f(-1) = 0 . f(-2) hay f(-1) = 0
Suy ra x = -1 là một nghiệm của f(x)
vậy đa thức f(x) có ít nhất 2 nghiệm là 0 và -1

\(x.f\left(x+1\right)=\left(x+2\right)f\left(x\right)\)
Thay \(x=0\):
\(\Leftrightarrow0=2f\left(0\right)\Leftrightarrow f\left(0\right)=0\)
Vậy \(x=0\)là nghiệm của phương trình \(f\left(x\right)=0\)
Thay \(x=\left(-2\right)\):
\(-2f\left(-1\right)=0\Leftrightarrow f\left(-1\right)=0\)
Vậy \(x=\left(-1\right)\)là nghiệm của phương trình \(f\left(x\right)=0\)
Bài 2:
Khi x=0 thì ta có: \(0\cdot f\left(0+1\right)=\left(0+2\right)\cdot f\left(0\right)\)
=>\(2\cdot f\left(0\right)=0\)
=>f(0)=0
=>x=0 là nghiệm của f(x)(1)
Khi x=-2 thì \(-2\cdot f\left(-2+1\right)=\left(-2+2\right)\cdot f\left(-2\right)\)
=>\(-2\cdot f\left(-1\right)=0\)
=>f(-1)=0
=>x=-1 là nghiệm của f(x)(2)
Từ (1),(2) suy ra f(x) có ít nhất 2 nghiệm