K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

http://olm.vn/hỏi-đáp/question/584545.html chờ xí tui thấy cái tên rồi giải cho bài 2

12 tháng 5 2016

2.

= 1/2.7 + 1/7.12 + 1/12.17 + ... + 1/2002.2007

= 1/2 - 1/7 + 1/7 - 1/12 + 1/12 - 1/17 + ... + 1/2002 - 1/2007

= 1/2 - 1/2007

= 2007/4014 - 2/4014

= 2005/4014

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
- Giúp tớ với nhé ^^Câu 1 : So sánh 2300 và 3200Câu 2 : Tính nhanh : 25 . 20, 04 + 75 . 20, 04 - 2004 . 20,03 + 2004 . 20,04Câu 4: Chứng tỏ số B = 1 + 3 + 32 + 33 + ... + 3162 + 3163 chia hết cho 40.Câu 5 : Tìm số x , y, z biết ( x - \(\frac{1}{3}\))(y - \(\frac{1}{5}\))(z + \(\frac{1}{4}\)) = 0 biết x + 2 = y - 1 = z + 1Câu 6 : Cho \(A=\frac{4}{n-5}\)A. Tìm giá trị n để A là phân sốB. Tìm giá trị n để A có giá trị là số...
Đọc tiếp

- Giúp tớ với nhé ^^
Câu 1 : So sánh 2300 và 3200
Câu 2 : Tính nhanh : 25 . 20, 04 + 75 . 20, 04 - 2004 . 20,03 + 2004 . 20,04

Câu 4: Chứng tỏ số B = 1 + 3 + 32 + 33 + ... + 3162 + 3163 chia hết cho 40.
Câu 5 : Tìm số x , y, z biết ( x - \(\frac{1}{3}\))(y - \(\frac{1}{5}\))(z + \(\frac{1}{4}\)) = 0 biết x + 2 = y - 1 = z + 1
Câu 6 : Cho \(A=\frac{4}{n-5}\)
A. Tìm giá trị n để A là phân số
B. Tìm giá trị n để A có giá trị là số nguyên
Câu 7 : Trên đường thẳng xy lần lượt lấy các điểm theo thứ tự A , B , C, D sao cho AC = BD
A. Chứng minh rằng AB = CD
B . Gọi P, Q lần lượt là trung điểm của AB và CD. Chứng minh rằng \(PQ=\frac{AC+BD}{2}\)
p/s: Các bạn trả lời giúp tớ cách giải nhé. Cảm ơn.
Câu 3 : Tính tổng \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2011.2013}+\frac{2}{2013.2015}\)

3
29 tháng 4 2015

Câu 2:

 25.20,04 + 75.20, 04 - 2004.20,03 + 2004.20,04

= 20,04(25 + 75 - 2003 + 2004)

= 20,04.101 = 2024,04

29 tháng 4 2015

C3: A=\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{2011\cdot2013}+\frac{2}{2013\cdot2015}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\)

\(=\left(\frac{1}{3}-\frac{1}{2015}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{2013}-\frac{1}{2013}\right)\)

\(=\left(\frac{2015}{6045}-\frac{3}{6045}\right)+0+...+0=\frac{2012}{6045}\)

mấy câu kia mình lười làm lắm bạn

Chúc bạn học tốt!^_^

25 tháng 1 2016

Em ms có học lớp 5 thôi ạ !

25 tháng 1 2016

em cũng ms lớp 5 thui ạ

23 tháng 1 2018

\(\frac{x}{-7}=\frac{5}{-35}\)

\(\frac{x.5}{-35}=\frac{5}{-35}\)

=> x . 5 = 5

x = 5 : 5 

x = 1

24 tháng 1 2018

sao trả lời có một câu mấy dậy bạn giúp mình với

3 tháng 9 2019

\(\frac{15}{A}=\frac{B}{7}\Leftrightarrow15.7=AB\Leftrightarrow105=AB\Leftrightarrow A\in1;3;5;7;15;35;105\) 

\(de:\frac{2n+1}{2n-1}\in Z^+\Rightarrow2n+1⋮2n-1\Rightarrow2n+1-2n+1⋮2n-1\)

\(\Leftrightarrow2⋮2n-1\Rightarrow2n-1=1\Leftrightarrow n=1\)

2 tháng 12 2017

-4/8 nha các bạn

22 tháng 1

Bài 6: Tìm các số nguyên 𝑥 , 𝑦 , 𝑧 x,y,z Bạn đã cho một hệ phương trình phức tạp, nhưng tôi sẽ cố gắng làm rõ và giải quyết từng bước. Các phương trình là: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 ​ 84=x−10 −10 x ​ − 10 𝑥 = − 7 𝑦 −10x=−7y 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z ​ Chúng ta sẽ phân tích từng phương trình. Phương trình 1: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 ​ 84=x−10 −10 x ​ Dường như có sự nhầm lẫn trong cách viết phương trình này, vì nó không rõ ràng. Tuy nhiên, tôi đoán bạn muốn nói 48 4 8 = 𝑥 − 10 × 𝑥 − 10 48 8 4 ​ =x−10× −10 x ​ . Để làm rõ, 48 4 8 48 8 4 ​ có thể viết là 48.5 48.5 (tức là 48 + 4 8 = 48.5 48+ 8 4 ​ =48.5). Phương trình trên có thể viết lại như sau: 48.5 = 𝑥 + 𝑥 48.5=x+x 48.5 = 2 𝑥 48.5=2x 𝑥 = 48.5 2 = 24.25 x= 2 48.5 ​ =24.25 Tuy nhiên, 𝑥 = 24.25 x=24.25 không phải là một số nguyên, nên có thể có sự nhầm lẫn trong cách viết phương trình. Phương trình 2: − 10 𝑥 = − 7 𝑦 −10x=−7y Ta có − 10 𝑥 = − 7 𝑦 −10x=−7y, hay là 10 𝑥 = 7 𝑦 10x=7y. Phương trình này cho thấy rằng 𝑥 x và 𝑦 y phải có một tỷ lệ đặc biệt sao cho khi nhân 𝑥 x với 10, kết quả phải là nhân 𝑦 y với 7. Do 𝑥 x và 𝑦 y là các số nguyên, ta có thể tìm các giá trị của 𝑥 x và 𝑦 y thỏa mãn điều kiện này. Phương trình 3: 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z ​ Giống như phương trình đầu tiên, biểu thức này không hoàn toàn rõ ràng. Tuy nhiên, nếu giả sử bạn muốn viết 𝑦 − 7 = 𝑧 + 𝑧 24 y−7=z+ 24 z ​ , ta có thể tiếp tục phân tích. Bài 7: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 ​ a) Tìm các số nguyên 𝑛 n để 𝐴 A là phân số: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 ​ là một phân số nếu mẫu số khác 0. Do đó, 𝑛 − 2 ≠ 0 n−2  =0, tức là 𝑛 ≠ 2 n  =2. Vậy, 𝐴 A sẽ là phân số với tất cả các số nguyên 𝑛 n ngoại trừ 𝑛 = 2 n=2. b) Tìm các số nguyên 𝑛 n để 𝐴 A là số nguyên: Để 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 ​ là một số nguyên, mẫu số phải chia hết cho tử số. Ta xét phép chia 3 𝑛 − 2 𝑛 − 2 n−2 3n−2 ​ . Ta thực hiện phép chia polynom: 3 𝑛 − 2 𝑛 − 2 = 3 + 4 𝑛 − 2 n−2 3n−2 ​ =3+ n−2 4 ​ Để 𝐴 A là một số nguyên, phần dư 4 𝑛 − 2 n−2 4 ​ phải là một số nguyên, nghĩa là 𝑛 − 2 n−2 phải là một ước của 4. Các ước của 4 là: ± 1 , ± 2 , ± 4 ±1,±2,±4. Do đó, 𝑛 − 2 n−2 có thể là 1 , − 1 , 2 , − 2 , 4 , − 4 1,−1,2,−2,4,−4. Từ đó, ta có: 𝑛 − 2 = 1 ⇒ 𝑛 = 3 n−2=1⇒n=3 𝑛 − 2 = − 1 ⇒ 𝑛 = 1 n−2=−1⇒n=1 𝑛 − 2 = 2 ⇒ 𝑛 = 4 n−2=2⇒n=4 𝑛 − 2 = − 2 ⇒ 𝑛 = 0 n−2=−2⇒n=0 𝑛 − 2 = 4 ⇒ 𝑛 = 6 n−2=4⇒n=6 𝑛 − 2 = − 4 ⇒ 𝑛 = − 2 n−2=−4⇒n=−2 Vậy các giá trị của 𝑛 n để 𝐴 A là một số nguyên là: 𝑛 = − 2 , 0 , 1 , 3 , 4 , 6 n=−2,0,1,3,4,6. Hy vọng tôi đã giúp bạn hiểu rõ hơn về các bài toán này! Nếu cần giải thích thêm hoặc có thêm câu hỏi, bạn có thể hỏi tiếp.