Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. D = ( 5 + 5^2 ) + ... + ( 5^99 + 5^100 )
D = 5 ( 1 + 2 ) + ... + 5^99 ( 1 + 2 )
D = 5 . 6 + ... + 5^99 . 6
D = 6 ( 5 + ... + 5^99 ) chia hết cho 6 ( đpcm )
2. gợi ý : nhóm 5 số vào một
3. Đề phải là 165 - 215
165 - 215
= (24)5 - 215
= 220 - 215
= 215 ( 25 - 1 )
= 215 . 31 chia hết cho 31
4. đề sai
\(A=2+2^2+2^3+........+2^{49}+2^{50}\)
\(=2.\left(1+2\right)+2^3+\left(1+2\right)+........2^{59}+\left(1+2\right)\)
\(=2.3+2^3.3+........+2^{59}.3\)
\(=3.\left(2+2^3+.......+2^{59}\right)\) luôn chia hết cho 3
Vay \(A=2+2^2+2^3+........+2^{49}+2^{50}\) chia hết cho 3
25.84 = 25.212 = 217
410.815 = 220.245 = 265
256.1253 = 512.59 = 521
1.x2+1+3=64
x6=64
Ta thấy:26=64
=>x=6
2.x2+4+6+8+10/ x1+3+5+7+9=243
x30/ x25=243
x30-25=243
x5=243
Ta thấy:35=243
=>x=5
Bài 1 :
\(2S=2+2^2+2^3+2^4+...+2^{10}\)
\(\Rightarrow S=2S-S=2^{10}-1\)
; mà \(5.2^8=\frac{5}{4}.4.2^8=\frac{5}{4}.2^2.2^8=\frac{5}{4}.2^{10}\)
Dễ thấy \(2^{10}-1< \frac{5}{4}.2^{10}\) (vì \(\frac{5}{4}>1\))
Do đó S < 5.28
Bài 2 :
Lũy thừa tầng là lũy thừa có dạng \(a^{b^{c^{d^{....}}}}\)
Muốn tính lũy thừa tầng ta tính lần lượt từ tâng cao nhất đến tầng thấp nhất
Ví dụ : \(3^{2^1}=3^2=9\)
A= 5+5^2+5^3+...+5^11
= (5+5^2)+...+(5^10+5^11)
= 5(1+5)+....+5^10(1+5)
= 5.6+...+5^10.6
= (5+...+5^10).6 chia hết cho 6
\(A=5+5^2+5^3+5^4=....+5^{10}+5^{11}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{10}+5^{11}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+....+5^{10}\left(1+5\right)\)
\(=5.6+5^3.6+....+5^{10}.6\)
\(=6\left(5+5^3+....+5^{10}\right)⋮6\left(ĐPCM\right)\)
Vậy \(A⋮6\)
\(1.8x+2x=25.2^2\)
\(10x=25.4=100\)
\(x=100:10=10\)
1. 8x + 2x = 25 . 22
x . ( 8 + 2) = 25 x 4
x . 10 = 100
x = 100 : 10
x = 10