K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(M=4x^2-9-2x-10-2\left(x^2+x-2\right)\)

\(=4x^2-2x-19-2x^2-2x+4\)

\(=2x^2-4x-15\)

Khi x=0 thì M=-15

9 tháng 2 2021

a, Ta có : \(M=4x^2-9-2\left(x^2+10x+25\right)-2\left(x^2-x+2x-2\right)\)

\(=4x^2-9-2x^2-20x-50-2x^2+2x-4x+4\)

\(=-22x-55\)

b, - Thay \(x=-2\dfrac{1}{3}=-\dfrac{7}{3}\) vào M ta được :

\(M=-\dfrac{11}{3}\)

c, - Thay M = 0 ta được : -22x - 55 = 0

=> x = -2,5

Vậy ...

a) Ta có: \(M=\left(2x+3\right)\left(2x-3\right)-2\left(x+5\right)^2-2\left(x-1\right)\left(x+2\right)\)

\(=4x^2-9-2\left(x^2+10x+25\right)-2\left(x^2+2x-x-2\right)\)

\(=4x^2-9-2x^2-20x-50-2\left(x^2+x-2\right)\)

\(=2x^2-20x-59-2x^2-2x+4\)

\(=-22x-55\)

b) Thay \(x=-2\dfrac{1}{3}\) vào biểu thức \(M=-22x-55\), ta được:

\(M=-22\cdot\left(-2+\dfrac{1}{3}\right)-55\)

\(=-22\cdot\left(\dfrac{-6}{3}+\dfrac{1}{3}\right)-55\)

\(=-22\cdot\dfrac{-5}{3}-55\)

\(=\dfrac{110}{3}-55=\dfrac{110}{3}-\dfrac{165}{3}\)

hay \(M=-\dfrac{55}{3}\)

Vậy: Khi \(x=-2\dfrac{1}{3}\) thì \(M=-\dfrac{55}{3}\)

c) Để M=0 thì -22x-55=0

\(\Leftrightarrow-22x=55\)

hay \(x=-\dfrac{5}{2}\)

Vậy: Khi M=0 thì \(x=-\dfrac{5}{2}\)

21 tháng 12 2021

a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

21 tháng 12 2021

câu b c d e đâu anh ơi

 

a: \(M=\dfrac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}=\dfrac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)

b: x thuộc {0;0,5}

=>x=0 hoặc x=0,5

Khi x=0 thì M=1/0+1=1

Khi x=0,5 thì M=1/0,5+1=1/1,5=2/3

=>M min=2/3 và M max=1

a: \(M=\dfrac{x^2\left(x-2\right)}{x-2}+\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}=x^2+x+1\)

b: Để M=7 thì (x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(loại)

Vậy: x=-3

26 tháng 11 2017

a)  M = ( 2x + 3)(2x - 3) - 2(x + 5)2 - 2(x - 1)(x + 2) 

   = 4x2 - 9 - 2(x2 + 10x + 25) - 2(x2 + x - 2)

   = 4x2 - 9 - 2x2 - 20x - 50 - 2x2 - 2x + 4

   = -22x - 55 =  -11(2x + 5)

b) M = -11(2x + 5) = - 11(2.\(\frac{-7}{3}\)+ 5) = \(\frac{-11}{3}\)

b)  M = -11(2x + 5) = 0

\(\Rightarrow\)2x + 5 = 0

\(\Rightarrow\)x = \(\frac{-5}{2}\)

26 tháng 11 2017

Ta có: M = (2x+3)(2x-3) - 2(x+5)2 - 2(x-1)(x+2) \(=\left(2x\right)^2-3^2-2\left(x^2+10x+25\right)-\) \(2\left(x^2+x-2\right)\)

\(=4x^2-9-2x^2-20x-50-2x^2-2x+4\) =\(\left(4x^2-2x^2-2x^2\right)-\left(20x+2x\right)-\left(50+9-4\right)\) \(=-22x-55\)

b, Với x = \(-2\frac{1}{3}=\frac{-7}{3}\)

\(\Rightarrow M=-22.\frac{-7}{3}-55=\frac{154}{3}-55=\frac{-11}{3}\)

c, Để M = 0 => -22x - 55 = 0 \(\Rightarrow-22x=55\Rightarrow x=\frac{-55}{22}=\frac{-5}{2}\)

Vậy \(x=\frac{-5}{2}\) 

a: ĐKXĐ: x<>2; x<>0

b: \(M=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x^3-2x^2-2x^2+4x}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x}{2}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)

c: M>=-3

=>(x+1+6x)/2x>=0

=>(7x+1)/x>=0

=>x>0 hoặc x<=-1/7

AH
Akai Haruma
Giáo viên
9 tháng 7 2023

Lời giải:
1. 

$M=(x^2+6x+9)+(x^2-9)-2(x^2-2x-8)$

$=x^2+6x+9+x^2-9-2x^2+4x+16=(x^2+x^2-2x^2)+(6x+4x)+(9-9+16)$
$=10x+16=5(2x+1)+11=5.0+11=11$

2.

$V=(9x^2+24x+16)-(x^2-16)-10x=9x^2+24x+16-x^2+16-10x$

$=(9x^2-x^2)+(24x-10x)+(16+16)=8x^2+14x+32$

$=8(\frac{-1}{10})^2+14.\frac{-1}{10}+32=\frac{767}{25}$

3.

$P=(x^2+2x+1)-(4x^2-4x+1)+3(x^2-4)$

$=x^2+2x+1-4x^2+4x-1+3x^2-12$
$=(x^2-4x^2+3x^2)+(2x+4x)+(1-1-12)$

$=6x-12=6.1-12=-6$

4.

$Q=(x^2-9)+(x^2-4x+4)-2x^2+8x$

$=x^2-9+x^2-4x+4-2x^2+8x$
$=(x^2+x^2-2x^2)+(-4x+8x)-9+4$

$=4x-5=4(-1)-5=-9$