Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=1 thì pt sẽ là: x+x-3=6x-6
=>6x-6=2x-3
=>4x=3
=>x=3/4
b: m^2x+m(x-3)=6(x-1)
=>x(m^2+m-6)=-6+3m=3m-6
=>x(m+3)(m-2)=3(m-2)
Để (1) có nghiệm duy nhất thì (m+3)(m-2)<>0
=>m<>-3 và m<>2
=>x=3/(m+3)
\(A=\dfrac{\left(\dfrac{3}{m+3}\right)^2+\dfrac{6}{m+3}+3}{\left(\dfrac{3}{m+3}\right)^2+2}\)
\(=\dfrac{9+6m+18+3m^2+18m+27}{\left(m+3\right)^2}:\dfrac{9+2m^2+12m+18}{\left(m+3\right)^2}\)
\(=\dfrac{3m^2+24m+54}{2m^2+12m+27}>=\dfrac{1}{2}\)
Dấu = xảy ra khi 6m^2+48m+108=2m^2+12m+27
=>4m^2+36m+81=0
=>m=-9/2
a)Để PT ( 3m - 1)x + 3 = 0 là PT bậc nhất thì:
3m-1 khác 0
=>m khác 1/3
b) PT có nghiệm x=-3 thì:
(3m-1).(-3)+3=0
<=>-9m+3+3=0
<=>-9m=-6
<=>m=2/3
Vậy m=2/3
c)Để PT vô nghiệm thì: 3m-1=0
=>m=1/3
a) \(mx=2-x\Leftrightarrow\left(m+1\right)x=2\).
Với \(m+1=0\Leftrightarrow m=-1\)phương trình tương đương:
\(0x=2\)(vô nghiệm:
Với \(m+1\ne0\Leftrightarrow m\ne-1\)phương trình tương đương:
\(x=\frac{2}{m+1}\).
Vậy với \(m=-1\)phương trình đã cho vô nghiệm, với \(m\ne-1\)phương trình đã cho có nghiệm duy nhất \(x=\frac{2}{m+1}\).
b) Bạn làm tương tự câu a).
m(mx+1)= 3(mx+1)
<=>m^2x+m=3mx+3
<=>m^2 - 3mx +m -3 = 0
co Δ = b^2 - 4ac
=\(\left(-3m\right)^2\) - 4 . ( m - 3) . (m^2)
= \(9m^2\) - \(12m^3\) + \(12m^2\)
= \(21m^2\) - \(12m^3\)
de pt vo nghiem thi Δ = 0
<=>\(21m^2\) - \(12m^3\) = 0
<=>\(7m^2\) - \(4m^3\) =0
<=>7m . ( m - \(\frac{4}{7}\) ) = 0
<=>\(\hept{\begin{cases}7m=0=>m=0\\m-\frac{4}{7}=0=>m=\frac{4}{7}\end{cases}}\)
vay voi m = { 0 , \(\frac{4}{7}\)} thi pt tren vo nghiem
\(PT\Leftrightarrow x\left(m^2-9\right)-\left(m-3\right)=0\)
PT vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}m^2-9=0\\m-3\ne0\end{matrix}\right.\Leftrightarrow m=-3\)
\(\Leftrightarrow\left(m^2-9\right)x=m-3\)
Pt đã cho vô nghiệm khi:
\(\left\{{}\begin{matrix}m^2-9=0\\m-3\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m=\pm3\\m\ne3\end{matrix}\right.\)
\(\Rightarrow m=-3\)