Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n là số tự nhiên nên ta có:
\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\ge1\)
CMR n\(\in \)N, n>3
\(\frac{1}{1^3}+\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{n^3} <2 \)
@Akai Haruma
Với \(n\ge3\) thì ta có:
\(\dfrac{1}{n^3}< \dfrac{1}{\left(n-2\right)\left(n-1\right)n}=\dfrac{1}{2}\left(\dfrac{1}{\left(n-2\right)\left(n-1\right)}-\dfrac{1}{\left(n-1\right)n}\right)\)
Áp dụng vào bài toán ta được
\(\dfrac{1}{1^3}+\dfrac{1}{2^3}+...+\dfrac{1}{n^3}\)
\(< 1+\dfrac{1}{8}+\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-2\right)\left(n-1\right)}-\dfrac{1}{\left(n-1\right)n}\right)\)
\(=1+\dfrac{1}{8}+\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{\left(n-1\right)n}\right)\)
\(< 1+\dfrac{1}{8}+\dfrac{1}{4}=\dfrac{11}{8}< 2\)
P = \(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2+5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
P =....
P = \(\frac{\sqrt{x}}{\sqrt{x}+1}\)
xin lỗi nhầm đề
1: \(P=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{x-4}\)
\(=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
2: Để P>2/3 thì P-2/3>0
=>\(\dfrac{3\sqrt{x}}{\sqrt{x}+2}-\dfrac{2}{3}>0\)
=>9 căn x-2 căn x-4>0
=>7 căn x>4
=>x>16/49
3: Để P là số nguyên thì \(3\sqrt{x}+6-6⋮\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}+2\in\left\{2;3;6\right\}\)
hay \(x\in\left\{0;1;16\right\}\)
Theo mình thì bài của bạn thiếu điều kiện để $m$ để PT có 2 nghiệm phân biệt (\(\Delta>0\) )
Sau khi thu được điều kiện cần của $m$ thì đoạn tiếp sau đó của bạn không có vấn đề, có chăng bạn biến đổi hơi phức tạp.
a, Chắc xét hàm số tổng quát!
Xét hàm số tổng quát:
\(\dfrac{1}{\left(k+1\right)\sqrt{k}}=\dfrac{\sqrt{k}}{k\left(k+1\right)}=\sqrt{k}\left(\dfrac{1}{k\left(k+1\right)}\right)\)
\(=\sqrt{k}\left[\sqrt{\dfrac{1}{k}}^2-\sqrt{\dfrac{1}{k+1}}^2\right]\)
\(=\sqrt{k}\left(\dfrac{1}{\sqrt{k}}+\dfrac{1}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)
\(=\left(1+\dfrac{\sqrt{k}}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)
Vì \(\dfrac{\sqrt{k}}{\sqrt{k+1}}< 1\Rightarrow1+\dfrac{\sqrt{k}}{\sqrt{k+1}}< 2\)
Do đó \(\left(1+\dfrac{\sqrt{k}}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)< 2.\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)
\(\Rightarrow\dfrac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\) (1)
Áp dụng điểu (1) ta được:
\(\dfrac{1}{2}< 2\left(\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\right)\)
\(\dfrac{1}{3\sqrt{2}}< 2\left(\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\right)\)
...................................
\(\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+....+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)
Với mọi giá trị của \(n>0\) ta luôn có: \(\sqrt{n+1}>0\)
Do đó \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\) (đpcm)
Áp dụng BĐT AM-GM ta có:
\(a^4+b^2+2ab^2\ge2\sqrt{a^4b^2}+2ab^2=2a^2b+2ab^2\)
\(b^4+a^2+2a^2b\ge2\sqrt{a^2b^4}+2a^2b=2ab^2+2a^2b\)
\(\Rightarrow Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\)
Lại có: \(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\)
\(\Leftrightarrow a^2+2ab-a+b^2-b=a^2+b^2\)
\(\Leftrightarrow2ab=a+b\ge2\sqrt{ab}\)\(\Rightarrow\left\{{}\begin{matrix}ab\ge1\\a+b\ge2\sqrt{ab}\ge2\end{matrix}\right.\)
Khi đó \(Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)
Đẳng thức xảy ra khi \(a=b=1\)