K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

\(\dfrac{\left(m^2+2\right)x+3m}{x}=2\) (ĐK \(x\ne0\))

\(\Leftrightarrow\left(m^2+2\right)x+3m=2x\)

\(\Leftrightarrow\left(m^2+2\right)x-2x+3m=0\)

\(\Leftrightarrow\left(m^2+2-2\right)x+3m=0\)

\(\Leftrightarrow m^2x+3m=0\)

để pt có nghiệm duy nhất \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\x=\dfrac{-3}{m}\end{matrix}\right.\)

NV
9 tháng 11 2021

ĐKXĐ: \(x^2-2mx+m^2-3m+2>0\)

\(\dfrac{x}{\sqrt{x^2-2mx+m^2-3m+2}}=\sqrt{x^2-2mx+m^2-3m+2}\)

- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP>0\end{matrix}\right.\) pt vô nghiệm

- Với \(x\ge0\)

\(\Rightarrow x=x^2-2mx+m^2-3m+2=0\)

\(\Rightarrow x^2-\left(2m+1\right)x+m^2-3m+2=0\) (1)

+ Với \(m^2-3m+2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\) 

\(m=1\Rightarrow x^2-3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) có 2 nghiệm (ktm)

\(m=2\Rightarrow x^2-5x=0\Rightarrow x=\left\{0;5\right\}\) ktm

+ Với \(m^2-3m+2\ne0\)

\(\Rightarrow\) pt đã cho có nghiệm duy nhất khi \(\left(1\right)\) có đúng 1 nghiệm dương

\(\Rightarrow x_1x_2=m^2-3m+2< 0\)

\(\Rightarrow1< m< 2\)

NV
23 tháng 12 2020

\(\Leftrightarrow\left(m-1\right)\left(m-3\right)x=\left(m-1\right)\left(m-2\right)\)

Pt có nghiệm duy nhất khi và chỉ khi \(\left(m-1\right)\left(m-3\right)\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ne1\\m\ne3\end{matrix}\right.\)

NV
16 tháng 12 2020

1.

\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)

Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:

\(t^2-3m.t+m=0\) (1) 

Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:

TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)

\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)

\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)

TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)

\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)

\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)

Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)

2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)

Ko tồn tại m thỏa mãn

Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?

 

16 tháng 12 2020

giải thích cho em bài 1 cái đoạn TH1,TH2 với ạ

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bài 2. 

ĐK: $x\geq \frac{-11}{2}$

$x+\sqrt{2x+11}=0\Leftrightarrow x=-\sqrt{2x+11}$

\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=2x+11\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ x^2-2x-11=0(*)\end{matrix}\right.\)

\(\Delta'(*)=12\)

\(\Rightarrow x=1\pm \sqrt{12}=1\pm 2\sqrt{3}\). Với điều kiện của $x$ suy ra $x=1-2\sqrt{3}$

$\Rightarrow a=1; b=-2\Rightarrow ab=-2$

 

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bài 1. 

Đặt $x^2+2x=t$ thì PT ban đầu trở thành:

$t^2-t-m=0(1)$

Để PT ban đầu có 4 nghiệm phân biệt thì:

Trước tiên PT(1) cần có 2 nghiệm phân biệt. Điều này xảy ra khi $\Delta (1)=1+4m>0\Leftrightarrow m> \frac{-1}{4}(*)$

Với mỗi nghiệm $t$ tìm được, thì PT $x^2+2x-t=0(2)$ cần có 2 nghiệm $x$ phân biệt. 

Điều này xảy ra khi $\Delta '(2)=1+t>0\Leftrightarrow t>-1$

Vậy ta cần tìm điều kiện của $m$ để (1) có hai nghiệm $t$ phân biệt đều lớn hơn $-1$

Điều này xảy ra khi \(\left\{\begin{matrix} (t_1+1)(t_2+1)>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1t_2+t_1+t_2+1>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -m+1+1>0\\ 1+2>0\end{matrix}\right.\Leftrightarrow m< 2(**)\)

Từ $(*); (**)\Rightarrow \frac{-1}{4}< m< 2$

b) 

Để pt ban đầu vô nghiệm thì PT(1) vô nghiệm hoặc có 2 nghiệm $t$ đều nhỏ hơn $-1$

PT(1) vô nghiệm khi mà $\Delta (1)=4m+1<0\Leftrightarrow m< \frac{-1}{4}$

Nếu PT(1) có nghiệm thì $t_1+t_2=1>-2$ nên 2 nghiệm $t$ không thể cùng nhỏ hơn $-1$

Vậy PT ban đầu vô nghiệm thì $m< \frac{-1}{4}$

c) Để PT ban đầu có nghiệm duy nhất thì:

\(\left\{\begin{matrix} \Delta (1)=1+4m=0\\ \Delta' (2)=1+t=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=-\frac{1}{4}\\ t=-1\end{matrix}\right.\).Mà với $m=-\frac{1}{4}$ thì $t=\frac{1}{2}$ nên hệ trên vô lý. Tức là không tồn tại $m$ để PT ban đầu có nghiệm duy nhất. 

d) 

Ngược lại phần b, $m\geq \frac{-1}{4}$

e) 

Để PT ban đầu có nghiệm kép thì PT $(2)$ có nghiệm kép. Điều này xảy ra khi $\Delta' (2)=1+t=0\Leftrightarrow t=-1$

$t=-1\Leftrightarrow m=(-1)^2-(-1)=2$

 

 

5 tháng 6 2021

undefined

5 tháng 6 2021

\(m\ge-1\)

10 tháng 8 2016

chu dep qua ha

16 tháng 12 2021

\(1.\left(x\ne\pm1\right)\Rightarrow pt\Leftrightarrow\left(x-m\right)\left(x-1\right)=\left(x+1\right)\left(x-2\right)\)

\(\Leftrightarrow x^2-x\left(m+1\right)+m=x^2-x-2\)

\(\Leftrightarrow-x\left(m+1\right)+m=-x-2\)

\(\Leftrightarrow x=\dfrac{m+2}{m}\left(m\ne0\right)\)

\(pt-có-ngo-duy-nhất\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m+2}{m}\ne1\\\dfrac{m+2}{m}\ne-1\end{matrix}\right.\)\(\Leftrightarrow m\ne-1\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-1\end{matrix}\right.\)

\(2.\left\{{}\begin{matrix}x^2+8y^2=12\left(1\right)\\x^3+2xy^2+12y=0\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow x^3+2xy^2+y\left(x^2+8y^2\right)=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2y\left(3\right)\\x^2-xy+4y^2=\left(x-\dfrac{y}{2}\right)^2+\dfrac{15}{4}y^2=0\left(4\right)\end{matrix}\right.\)

\(\left(3\right)\left(1\right)\Rightarrow4y^2+8y^2=12\Leftrightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)

với \(x=y=0\) không là nghiệm của hệ pt

với \(x=y\ne0\Rightarrow\left(4\right)>0\Rightarrow\left(4\right)-vô-nghiệm\)

\(\Rightarrow\left(x;y\right)=\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)

16 tháng 12 2021

\(1,\Leftrightarrow\left(x-m\right)\left(x-1\right)=x^2-x-2\\ \Leftrightarrow x^2-x-mx+m-x^2+x+2=0\\ \Leftrightarrow mx=m+2\)

PT có nghiệm duy nhất \(\Leftrightarrow m\ne0\)

\(2,\Leftrightarrow\left\{{}\begin{matrix}x^2y+8y^3=12y\\x^3+2xy^2+12y=0\end{matrix}\right.\)

Thế \(PT\left(1\right)\rightarrow PT\left(2\right)\Leftrightarrow x^3+2xy^2+x^2y+8y^3=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x^2-2xy+4y^2\right)+xy\left(x+2y\right)=0\\ \Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2y\\\left(x-\dfrac{1}{2}y\right)^2+\dfrac{15}{4}y^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2y\\\left\{{}\begin{matrix}x-\dfrac{1}{2}y=0\\y^2=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2y\\x=y=0\end{matrix}\right.\)

Thay \(x=y=0\Leftrightarrow0+0=12\left(loại\right)\)

Thay \(x=-2y\Leftrightarrow4y^2+8y^2=12y^2=12\Leftrightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)