Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: m - 1 x + 6 ≥ 0 ; x + 2 ≥ 0 . Do đó,
m - 1 x + 6 + x + 2 = 0 ⇔ m - 1 x + 6 = 0 x + 2 = 0 ⇔ m - 1 . - 2 + 6 = 0 x = - 2 ⇔ - 2 m + 2 + 6 = 0 x = - 2 ⇔ m = 4 x = - 2
Chọn A.
Điều kiện: -1 < x < 1.
Với điều kiện trên, phương trình đã cho tương đương: x = 5- 2m
Để phương trình đã cho có nghiệm thì: -1 < 5- 2m < 1
⇔ - 6 < - 2 m < - 4 ⇔ 3 > m > 2 .
Ta có: 2x + 4 < 0 khi x < - 2.
* Xét mx + 1 > 0 (*)
+ Nếu m = 0 thì (*) trở thành: 0x + 1 >0 (luôn đúng).
+ Nếu m > 0 thì * ⇔ m x > - 1 ⇔ x > - 1 m
Suy ra, tập nghiệm của hệ bất phương trình không thể - ∞ ; - 2
+ Nếu m < 0 thì * ⇔ m x > - 1 ⇔ x < - 1 m
Để hệ bất phương trình có tập nghiệm là - ∞ ; - 2 khi và chỉ khi :
- 1 m > - 2 ⇔ - 1 + 2 m m > 0 ⇔ - 1 + 2 m < 0 ( vì m < 0)
⇔ 2 m < 1 ⇔ m < 1 2
Kết hợp điều kiện m < 0 ta được: m < 0
Từ các trường hợp trên suy ra: m ≤ 0 .
+ Khi m = 0, bất phương trình trở thành - 2 x + 2 < 0 ⇔ x > 1 . Vậy m = 0 không thỏa mãn yêu cầu của bài toán.
+ Khi m ≠ 0 , bất phương trình vô nghiệm khi m x 2 + 2 m - 1 x + m + 2 ≥ 0 , ∀ x ∈ ℝ . ⇔ a > 0 ∆ ' ≤ 0 ⇔ m > 0 ( m - 1 ) 2 - m ( m + 2 ) ≤ 0 .
⇔ m > 0 - 4 m + 1 ≤ 0 ⇔ m > 0 m ≥ 1 4 ⇔ m ≥ 1 4
Chọn C.