K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

\(=\left(m+5\right)^2-n^2=\left(m-n+5\right)\left(m+n+5\right)\)

5 tháng 10 2021

a, \(m^2-n^2=\left(m-n\right)\left(m+n\right)\)

b, \(4m^2-16n^2=\left(2m-4n\right)\left(2m+4n\right)=4\left(m-2n\right)\left(m+2n\right)\)

c, \(49-16x^2=\left(7-4x\right)\left(7+4x\right)\)

d, \(25-9y^2=\left(5-3y\right)\left(5+3y\right)\)

e, \(81x^2-16y^2=\left(9x-4y\right)\left(9x+4y\right)\)

30 tháng 4 2017

a) Tìm được x = - 1            b) Tìm được  x = 17 20

23 tháng 10 2021

Bài 4: 

Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

26 tháng 5 2016

Ta có:

m2-2m+1+n2-2n+1

=(m-1)2+(n-1)2>0

Đpcm

26 tháng 5 2016

Dễ thui Ta có: 2 = 2 mà đây là tổng

=> đẳng thức trên lớn hơn 2

Bừa hìhif

30 tháng 9 2021

\(m^3+n^3+p^3-3mnp=\left(m^3+3m^2n+3mn^2+n^3\right)+p^3-3mnp-3m^2n-3mn^2=\left(m+n\right)^3+p^3-3mn\left(m+n+p\right)\)

\(=\left(m+n+p\right)\left[\left(m+n\right)^2-\left(m+n\right)p-p^2\right]-3mn\left(m+n+p\right)\)

\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2\right)-3mn\left(m+n+p\right)\)

\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2-3mn\right)\)

\(=\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-mp\right)\)

\(m^2+n^2+2\ge2\left(m+n\right)\\ \Leftrightarrow\left(m^2+2m+1\right)+\left(n^2+2n+1\right)\ge0\\ \Leftrightarrow\left(m+1\right)^2+\left(n+1\right)^2\ge0\forall m,n\)

24 tháng 7 2021

m2 + n+ 2 ≥ 2 (m + n )

⇔m2+n2+2-2m-2n≥0

⇔m2+n2+1+1-2m-2n≥0

⇔m2-2m+1+n2+2n+1≥0

⇔(m-1)2+(n-1)2≥0 (luôn đúng)

4 tháng 10 2023

 Nếu m hoặc n chia hết cho 3 thì hiển nhiên \(nm\left(m^2-n^2\right)⋮3\)

 Nếu cả m và n đều không chia hết cho 3 thì \(m^2,n^2\) đều chia 3 dư 1 (tính chất của số chính phương). Do đó \(m^2-n^2⋮3\) nên \(mn\left(m^2-n^2\right)⋮3\)

 Vậy \(mn\left(m^2-n^2\right)⋮3\) với mọi cặp số nguyên m, n.