Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hầu hết các dạng bài này bạn chỉ cần quy đồng là ra ngay nhé :)
Điều kiện xác định : \(0< x\ne1\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
Theo đề bài ta có: ab + bc + ca = 1
\(\Rightarrow a^2+1=a^2+ab+ac+bc=\left(a+b\right)\left(a+c\right)\)(1)
\(\Rightarrow b^2+1=b^2+ab+bc+ac=\left(a+b\right)\left(b+c\right)\)(2)
\(\Rightarrow c^2+1=c^2+ab+bc+ac=\left(a+c\right)\left(b+c\right)\)(3)
Từ (1), (2) và (3) \(\Rightarrow\left(a+b\right)-\sqrt{\frac{\left(a^2+1\right)\left(b^2+1\right)}{c^2+1}}\)
\(=\left(a+b\right)-\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}}\)
\(=\left(a+b\right)-\sqrt{\left(a+b\right)^2}\)
\(=\left(a+b\right)-\left(a+b\right)=0\)
(Nhớ k cho mình với nhé!)
thế 1=ab+ac+bc vào biểu thức dước căn rồi phân tích thành nhân tử khai phương được a+b.dap so là 0
Đáp án D
Hướng dẫn cách giải bằng máy tính cầm tay:
Gán các giá trị :
Sử dụng chức năng giải hệ phương trình bậc nhất 2 ẩn
{Aa+Bb=Ca+b=dAa+Bb=Ca+b=dvới d là giá trị các đáp án
Giải hpt ta được:⎧⎨⎩a=13b=16⇒a+b=12
bạn ơi nếu đã trả lời thì trả lời tử tế giúp mình với chứ ạ
Em làm thử nhé!
Bài 1: \(A=\left[\frac{a^2}{b-1}+4\left(b-1\right)\right]+\left[\frac{b^2}{a-1}+4\left(a-1\right)\right]-4\left(a+b\right)+8\)
Cauchy vào là ra rồi ạ;)
Bài 2: Em chịu
2) Có: \(\sqrt{ab}\le\frac{a+b}{2}=1\); \(\sqrt{a}+\sqrt{b}=\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}\le\sqrt{2\left(a+b\right)}=2\)
\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}\ge\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3=\frac{a^2}{\sqrt{a}}+\frac{b^2}{\sqrt{b}}\)
\(\ge\frac{\left(a+b\right)^2}{\sqrt{a}+\sqrt{b}}\ge=\frac{2^2}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=1\)
\(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a-1}}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}\right)^2-2\sqrt{a}+1}\)
\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}-1}{\sqrt{a}}\)
Mà \(\sqrt{a}-1< \sqrt{a}\) => \(\frac{\sqrt{a}-1}{\sqrt{a}}< 1\)
Vậy M < 1.