Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+3^3+...+3^{2021}\)
\(\Rightarrow A+1=1+3+3^2+3^3+...+3^{2021}\)
\(A+1=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2019}+3^{2020}+3^{2021}\right)\)
\(A+1=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{2019}\left(1+3+3^2\right)\)
\(A+1=13.3^3.13+...+3^{2019}.13\)
\(A+1=13\left(1+3^3+...+3^{2019}\right)\)
\(\Rightarrow A+1⋮13\)
\(\Rightarrow A:13d\text{ư}12\)
ta có :
A = 3 + 32 + ( 33 +34 + 35 ) + ( 36 + 37 + 38 ) + ... + ( 32019 +32020 + 32021 )
Đặt B = ( 33 +34 + 35 ) + ( 36 + 37 + 38 ) + ... + ( 32019 +32020 + 32021 )
B = 351 + ( 33 .33 + 33 . 34 + 33 .35 ) + .... + ( 32016 .33 + 32016 .34 + 32016 . 35 )
B = 351 + 351 . 33 + ... + 351 .32016
B = 351 ( 1 + 33 + ... + 32016 ) \(⋮\)11
Thay B vào A => 3 + 32 + B chia 11 dư 3 + 32
ta có 3 + 32 = 3 + 9
= 12
mà 12 \(\equiv\)-1 ( mod 13 )
Vậy A chia 13 dư -1
học CLB toán à : > ? có bài nào hay hay ib mk nha ^^
Học tốt
#Gấu
S = 1 + 2 + 22 + 23 +24 + 25 +...+ 260 + 261 + 262 + 263
= ( 1 + 22) +( 2 + 23) + (24 + 26) + ( 25 + 27) +...+ (260 + 262) + ( 261 + 263)
=( 1 + 22) + 2 ( 1 + 22) + 24 (1 + 22) + 25 (1 +22)+...+ 260 ( 1 + 22) + 261( 1 + 22)
= ( 1 + 22)( 1 + 2 +24 + 25 +...+ 260)
= 5 ( 1 + 2 +24 + 25 +...+ 260)
Vậy S chia hết cho 5 vì có một thừa số là 5.
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
a) 15 + 23 = 1 + 8 = 9 = 32 ( là số chính phương )
b) 52 + 122 = 25 + 144 = 169 = 132 ( là số chính phương )
c) 26 + 62 = 64 + 36 = 100 = 1002 ( là số chính phương )
d) 13 + 23 + 33 + 43 + 53 + 63
= 1 + 8 + 27 + 64 + 125 + 216
= 441 = 212 ( là số chính phương )
a) 15 + 23=1 + 8 = 9 (là số chính phương)
b) 52 + 122= 25 + 144= 169 (là số chính phương)
c) 26 + 62= 64 + 36=100 (là số chính phương)
d) 142 – 122= 196 - 144=52 (không là số chính phương)
e) 13 + 23 + 33 + 43 + 53 + 63= 1 + 8 + 27 + 64 + 125 + 216 = 411 (là số chính phương)
kp[