Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3.M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{38}}\)
=> \(3M-M=2M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{38}}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{39}}\)
=> \(2M=1-\frac{1}{3^{39}}\)
=> \(M=\frac{1}{2}\left(1-\frac{1}{3^{39}}\right)\)
do \(1-\frac{1}{3^{39}}< 1\)
=> \(\frac{1}{2}\left(1-\frac{1}{3^{39}}\right)< \frac{1}{2}.1=\frac{1}{2}\)
Vay \(M< \frac{1}{2}\)
Chuc bn hoc tot !
\(\left|x+1\right|và\left|x+2\right|\ge0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)+\left(x+2\right)=3\\\left(x+1\right)+\left(x+2\right)=-3\end{cases}}\)
\(\orbr{\begin{cases}2x+3=3\\2x+3=-3\end{cases}}\)
\(\orbr{\begin{cases}2x=0\\2x=-6\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
\(\left|x+1\right|+\left|x+2\right|=3\)
Xét \(x+1\ge0;x+2\ge0\Leftrightarrow x\ge-1;x\ge-2\Rightarrow x\ge-1\) ta có : \(\hept{\begin{cases}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\end{cases}}\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|=3\Leftrightarrow x+1+x+2=3\Leftrightarrow2x+3=3\Rightarrow x=0\)(TM)
Xét \(x+1\le0;x+2\ge0\Leftrightarrow-2\le x\le-1\) ta có : \(\hept{\begin{cases}\left|x+1\right|=-x-1\\\left|x+2\right|=x+2\end{cases}}\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|=3\Leftrightarrow-x-1+x+2=3\Leftrightarrow1=3\) (loại)
Xét \(x+1\le0;x+2\le0\Leftrightarrow x\le-1;x\le-2\Leftrightarrow x\le-2\) ta có : \(\hept{\begin{cases}\left|x+1\right|=-x-1\\\left|x+2\right|=-x-2\end{cases}}\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|=-x-1-x-2=-2x-3=3\Rightarrow x=-3\)(TM)
Vậy \(x=\left\{-3;0\right\}\)
Để M là số nguyên
Thì (x2–5) chia hết cho (x2–2)
==>(x2–2–3) chia hết cho (x2–2)
==>[(x2–2)—3] chia hết cho (x2–2)
Vì (x2–2) chia hết cho (x2–2)
Nên 3 chia hết cho (x2–2)
==> (x2–2)€ Ư(3)
==> (x2–2) €{1;-1;3;-3}
TH1: x2–2=1
x2=1+2
x2=3
==> ko tìm được giá trị của x
TH2: x2–2=-1
x2=-1+2
x2=1
12=1
==>x=1
TH3: x2–2=3
x2=3+2
x2=5
==> không tìm được giá trị của x
TH4: x2–2=-3
x2=-3+2
x2=-1
(-1)2=1
==> x=-1
Vậy x € {1;—1)
đặt A = |x + 1| + |x + 3|
ta có A = |x + 1| + |x + 3| = |x + 1| + |-x - 3| > |x + 1 -x - 3| = 2
=> Amin = 2 <=> (x+1)(-x-3) > 0
vậy Amin= 2 <=> -3< x <-1
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{35.37}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{35}-\frac{1}{37}\)
\(=\frac{1}{1}-\frac{1}{37}<1\text{ Vậy }A<1\)
Hướng dẫn:
\(M=\frac{1^2}{1.3}+\frac{2^2}{3.5}+\frac{3^2}{5.7}+...+\frac{99^2}{197.199}\)
\(\Rightarrow4M=\frac{1.4}{1.3}+\frac{4.4}{3.5}+\frac{9.4}{5.7}+...+\frac{9801.4}{197.199}\)
\(\Rightarrow4M=\frac{2.2}{1.3}+\frac{4.4}{3.5}+\frac{6.6}{5.7}+...+\frac{198.198}{197.199}\)
Đến đoạn này bạn đưa về dạng tổng quát nhé:
\(\frac{n^2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{4}+\frac{1}{8\left(2n-1\right)}-\frac{1}{8\left(2n+1\right)}\) (Tự phân tích)
Sau đó thay vào A. Kết quả tìm được là \(A=\frac{1}{8}-\frac{1}{8.2013}+\frac{1006}{4}=251,6249379\)