Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng hệ quả định lý thales:
\(\frac{MQ}{CD}+\frac{MP}{AB}=\frac{AM}{AC}+\frac{MC}{AC}=\frac{AC}{AC}=1\)
Áp dụng BĐT bunyakovsky:
\(\left(\frac{1}{AB^2}+\frac{1}{CD^2}\right)\left(MP^2+MQ^2\right)\ge\left(\frac{MP}{AB}+\frac{MQ}{CD}\right)^2=1\)
\(\Rightarrow\frac{1}{AB^2}+\frac{1}{CD^2}\ge\frac{1}{MP^2+MQ^2}\)
dấu = xảy ra khi \(\frac{MC}{AM}=\frac{CD^2}{AB^2}\)
b) chưa nghĩ :v
Hahaha. Hỏi một phát 5 câu lun hả bà!!!!!
Bài 5 nhé:
Ta có: (làm hơi tắt nhưng cái này cậu tự biến đổi đc)
\(y=72x-\sqrt{\frac{5x^5-16277165}{20}}\) => \(5x^5-\frac{16277165}{20}\ge0\)( vì có căn nên cái bên trong lun lớn hon hoặc = 0)
=> \(x\ge\sqrt[5]{\frac{16277165}{5}}=20,0688....\)mà x nguyên dương => \(x\ge21\)
Nhập vào máy tính: X = X+1 : 72X - \(\sqrt{\frac{5x^5-16277165}{20}}\)
Sau đó ấn CALC 20 = = = .... ( ấn liên tiếp phím = tìm các giá trị \(72x-\sqrt{\frac{5x^5-16277165}{20}}\)nguyên dương, đến khi \(72x-\sqrt{\frac{5x^5-16277165}{20}}\)âm thì dừng)
=> Các cặp số (x;y) thỏa mãn đề bài là (29;11)
a) Xét 2 tam giác vuông AMB và ANC có: \(\widehat{MAB}=\widehat{NAC}\) ( do AD là tia phân giác ^A )
\(\Rightarrow\)\(\Delta AMB~\Delta ANC\) ( g-g ) \(\Rightarrow\)\(\frac{BM}{AB}=\frac{CN}{AC}\)
b) Theo bđt 3 điểm ta có: \(\hept{\begin{cases}BM+DM\le BD\\CN+DN\le CD\end{cases}}\)\(\Rightarrow\)\(BM+CN+DM+DN\le BC\)
\(\Rightarrow\)\(BM+CN\le BC\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}M\in BD,AD\\N\in CD,AD\end{cases}}\)\(\Rightarrow\)\(M\equiv N\equiv D\)\(\Rightarrow\)\(BD\perp AD;CD\perp AD\) hay tam giác ABC có AD vừa là đường phân giác vừa là đường cao => tam giác ABC cân tại A
c) Có: \(\sin\left(\frac{A}{2}\right)=\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\le\frac{BC}{AB+AC}\le\frac{BC}{2\sqrt{AB.AC}}\)
Dấu "=" xảy ra khi tam giác ABC cân tại A
con lợn và con chó nặng 102kg,con lợn và con bò nặng 231kg ,con chó và con bò nặng 177 kg .Trung bình mỗi con nặng bao nhiêu kg?
Ta có: Sabm = Samc ( chung đường cao, đáy bằng nhau)
Sadn = Sanc (chung đường cao, đáy bằng nhau)
=> Sabcd = 2Samcn
Mặt khác: Samn > Smnc => Samcn < 2Samn
Samn = 1/2(AM.AN. SinA) < 1/2(AM.AN) <= 1/2 . (AM + NA)^2/4 = (Am+AN)^2 / 8 (cô si)
=> Sabcd < 4. (am+an)^2 / 8 = 1/2 (am+an)^2