\(\left(\frac{x^2+x+10}{x^2-9}+\frac{1}{x-3}\right)\): \(\frac{1}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

Ta có : A=20+21+22+23+...+22010A=20+21+22+23+...+22010

3A=2+22+23+24+...+220113A=2+22+23+24+...+22011

=> 2A=3AA=(21+22+...+22011)(20+21+...+22010)

=>2A=2201112A=22011−1

=>A=2201112A=22011−12

=> A < B ( vì 2201112<2201122011−12<22011 )

 
22 tháng 8 2017

Bexiu bạn đang làm cái j thế!!?

22 tháng 8 2017

- A =\(\frac{x^2+3+2x-6-x-3}{x^2-9}\) 

- A =\(\frac{x^2+x-6}{x^2-9}\)

- A = \(\frac{\left(x+3\right)\left(x-2\right)}{\left(x+3\right)\left(x-3\right)}\)

- A = \(\frac{x-2}{x-3}\)

27 tháng 8 2017

Ôn tập cuối năm phần số học

30 tháng 12 2019

\(e ) Để \)  \(M\)\(\in\)\(Z \)  \(thì\) \(1 \)\(⋮\)\(x +3\)

\(\Leftrightarrow\)\(x + 3 \)\(\in\)\(Ư\)\((1)\)\(= \) { \(\pm\)\(1 \) }

\(Lập\)  \(bảng :\)

\(x +3\)\(1\)\(- 1\)
\(x\)\(-2\)\(- 4\)

\(Vậy : Để \)  \(M\)\(\in\)\(Z\)  \(thì\) \(x\)\(\in\)\(- 4 ; - 2\) }

30 tháng 12 2019

e) Để M \(\in\)Z <=> \(\frac{1}{x+3}\in Z\)

<=> 1 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(1) = {1; -1}

Lập bảng: 

x + 31-1
  x-2-4

Vậy ....

f) Ta có: M > 0

=> \(\frac{1}{x+3}\) > 0

Do 1 > 0 => x + 3 > 0

=> x > -3

Vậy để M > 0 khi x > -3 ; x \(\ne\)3 và x \(\ne\)-3/2

10 tháng 1 2020

Phép nhân và phép chia các đa thứcPhép nhân và phép chia các đa thức

NV
8 tháng 3 2020

\(A=\left(\frac{-\left(x-3\right)}{\left(x+3\right)}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right).\left(\frac{x+3}{3x^2}\right)\)

\(=\left(-1+\frac{x}{x+3}\right)\left(\frac{x+3}{3x^2}\right)=\frac{-3}{\left(x+3\right)}.\frac{\left(x+3\right)}{3x^2}=\frac{-1}{x^2}\)

\(A< 0\Rightarrow\frac{-1}{x^2}< 0\Rightarrow-1< 0\) (luôn đúng)

Vậy \(x\ne0;x\ne\pm3\) thì \(A< 0\)

a) Ta có: \(N=\left(\frac{x+3}{x-3}+\frac{18}{9-x^2}+\frac{x-3}{x+3}\right):\left(1-\frac{x+1}{x+3}\right)\)

\(=\left(\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\frac{18}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\right):\left(\frac{x+3}{x+3}-\frac{x+1}{x+3}\right)\)

\(=\frac{x^2+6x+9-18-\left(x^2-6x+9\right)}{\left(x-3\right)\left(x+3\right)}:\frac{2}{x+3}\)

\(=\frac{x^2+6x-9-x^2+6x-9}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{2}\)

\(=\frac{12x-18}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{2}\)

\(=\frac{12x-18}{x-3}\cdot\frac{1}{2}\)

\(=\frac{12x-18}{2x-6}\)

b)

ĐKXĐ: \(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)

Đặt \(N=-\frac{1}{2}\)

\(\Leftrightarrow\frac{12x-18}{2x-6}=-\frac{1}{2}\)

\(\Leftrightarrow12x-18=\frac{6-2x}{2}\)

\(\Leftrightarrow12x-18=3-x\)

\(\Leftrightarrow12x-18-3+x=0\)

\(\Leftrightarrow13x-21=0\)

\(\Leftrightarrow13x=21\)

hay \(x=\frac{21}{13}\)(tm)

Vậy: Khi \(N=-\frac{1}{2}\) thì \(x=\frac{21}{13}\)

c) Để N<0 thì 12x-18 và 2x-6 khác dấu

*Trường hợp 1:

\(\left\{{}\begin{matrix}12x-18>0\\2x-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x>18\\2x< 6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\frac{3}{2}\\x< 3\end{matrix}\right.\)\(\Leftrightarrow\frac{3}{2}< x< 3\)

*Trường hợp 2:

\(\left\{{}\begin{matrix}12x-18< 0\\2x-6>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x< 18\\2x>6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \frac{3}{2}\\x>3\end{matrix}\right.\)(vô lý)

Vậy: Khi N<0 thì \(\frac{3}{2}< x< 3\)