K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

a ) ĐKXĐ : \(x\ne\pm2\)

Ta có : \(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{x^2-4}\)

\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x+2}{x-2}\)

b ) Để \(M\in Z\Leftrightarrow\frac{x+2}{x-2}\in Z\Leftrightarrow x+2⋮x-2\)

\(\Leftrightarrow x-2+4⋮x-2\)

\(\Leftrightarrow4⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\left(x\in Z\Rightarrow x-2\in Z\right)\)

\(\Leftrightarrow x\in\left\{3;1;4;0;6;-2\right\}\)

Vậy \(M\in Z\Leftrightarrow x\in\left\{3;1;4;0;6;-2\right\}\)

:D

9 tháng 12 2018

b ) \(x\in\left\{3;1;4;0;6\right\}\left(x\ne-2\right)\)

Mik quên :D 

16 tháng 12 2016

a. M=\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{x^2-4}\)

\(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\) MC = (x-2)(x+2)

\(M=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{x+2}{x-2}\)

b. Ta có: \(M=\frac{x+2}{x-2}=\frac{x-2+2+2}{x-2}=\frac{x-2+4}{x-2}=\frac{x-2}{x-2}+\frac{4}{x-2}=1+\frac{4}{x-2}\)

Để M đạt giá trị nguyên thì \(\frac{4}{x-2}\) cũng phải đạt giá trị nguyên

\(\Leftrightarrow\left(x-2\right)\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow x=\left\{3;1;4;0;6;-2\right\}\)

16 tháng 12 2016

a) \(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow M=\frac{x+2-\left(x-2\right)+x^2+4x}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow M=\frac{x+2-x+2+x^2+4x}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow M=\frac{x^2+4x+4}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{x+2}{x-2}\)

b) \(\frac{x+2}{x-2}=\frac{x-2+4}{x-2}=\frac{x-2}{x-2}+\frac{4}{x-2}=1+\frac{4}{x-2}\)

\(\Rightarrow x-2\inƯ_4\left\{-4;-2;-1;1;2;4\right\}\)

Ta có :

\(x-2=-4\Rightarrow x=-2\) (loại)

\(x-2=-2\Rightarrow x=0\)

\(x-2=-1\Rightarrow x=1\)

\(x-2=1\Rightarrow x=3\)

\(x-2=2\Rightarrow x=4\)

\(x-2=4\Rightarrow x=6\)

Vậy: Các giá trị của x để \(M\in Z\) là:

\(x=0;1;3;4;6\)

 

 

a) \(p=\left(\frac{x^2-x}{x+1}\right)\left(\frac{4x-2x+2}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x-1\right)}{x+1}.\frac{2\left(x+1\right)}{x\left(x-1\right)}=2\)

b)\(m=\frac{x+2-\left(x-2\right)+x^2+4x}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x+2}{x-2}=1+\frac{4}{x-2}\)

Để m nguyên thì \(4⋮x-2\)

\(\Rightarrow x-2\in\left\{1,2,4,-1,-2,-4\right\}\)

\(\Leftrightarrow x\in\left\{3,4,6,1,0,-2\right\}\)

8 tháng 3 2020

\(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{x^2-4}\left(x\ne\pm2\right)\)

\(\Leftrightarrow M=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow M=\frac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow M=\frac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x+2}{x-2}\)

Để M có giá trị nguyên thì x+2 chia hết cho x-2

Ta có x+2=x-2+4

=> x-2+4 chia hết cho x-2

=>4 chia hết cho x-2

Vì x nguyên => x-2 nguyên

=> x-2 thuộc Ư (4)={-4;-2;-1;1;2;4}

Ta có bảng

x-2-4-2-1124
x-201346
23 tháng 12 2022

a)

\(ĐKXĐ:\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.< =>\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

b)

\(\dfrac{1}{x-2}-\dfrac{1}{x+2}+\dfrac{x^2+4x}{x^2-4}\)

\(=\dfrac{1}{x-2}-\dfrac{1}{x+2}+\dfrac{x\left(x+4\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x\left(x+4\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x+2}{x-2}\)

c)

\(\dfrac{x+2}{x-2}=\dfrac{x-2+4}{x-2}=\dfrac{x-2}{x-2}+\dfrac{4}{x-2}=1+\dfrac{4}{x-2}\)

vậy M nhận giá trị nguyên thì 4⋮x-2

=> x-2 thuộc ước của 4

\(Ư\left(4\right)\in\left\{-1;1;-2;2;;4;-4\right\}\)

ta có bảng sau

x-2-11-224-4
x1(tm)3(tm)0(tm)4(tm)6(tm-2(loại)

 

23 tháng 12 2022

loading...

13 tháng 12 2019

a) ĐKXĐ: \(\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\\2-x\ne0\end{cases}}\) => \(\hept{\begin{cases}x\ne-2\\x\ne\pm2\\x\ne2\end{cases}}\) => \(x\ne\pm2\)

Ta có:Q = \(\frac{x-1}{x+2}+\frac{4x+4}{x^2-4}+\frac{3}{2-x}\)

Q = \(\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4x+4}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

Q = \(\frac{x^2-2x-x+2+4x+4-3x-6}{\left(x+2\right)\left(x-2\right)}\)

Q = \(\frac{x^2-2x}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x}{x+2}\)

b) ĐKXĐ P: x - 3 \(\ne\)0 => x \(\ne\)3

Ta có: P = 3 => \(\frac{x+2}{x-3}=3\)

=> x + 2 = 3(x - 3)

=> x + 2 = 3x - 9

=> x - 3x = -9 - 2

=> -2x = -11

=> x = 11/2 (tm)

Với x = 11/2 thay vào Q => Q = \(\frac{\frac{11}{2}}{\frac{11}{2}+2}=\frac{11}{15}\)

c) Với x \(\ne\)\(\pm\)2; x \(\ne\)3

Ta có: M = PQ = \(\frac{x+2}{x-3}\cdot\frac{x}{x+2}=\frac{x}{x-3}=\frac{x-3+3}{x-3}=1+\frac{3}{x-3}\)

Để M \(\in\)Z <=> 3 \(⋮\)x - 3

=> x - 3 \(\in\)Ư(3) = {1; -1; 3; -3}

Lập bảng:

x - 3 1 -1 3 -3
  x 4 2 (ktm) 6 0

Vậy ...

9 tháng 12 2017

\(M=\frac{4x+8}{x^2-1}:\frac{x+2}{x+1}-\frac{x-2}{1-x}\)   \(ĐKXĐ:x\ne\pm1\)

\(M=\frac{4\left(x+2\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x+1}{x+2}+\frac{x-2}{x-1}\)

\(M=\frac{4}{x-1}+\frac{x-2}{x-1}\)

\(M=\frac{4+x-2}{x-1}\)

\(M=\frac{x+2}{x-1}\)

vậy \(M=\frac{x+2}{x-1}\)