Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A + ( x2y - 2xy2 + 5xy - 3 ) = -2x2y + xy2 + xy - 5
A = -2x2y + xy2 + xy - 5 - ( x2y - 2xy2 + 5xy - 3 )
A = -2x2y + xy2 + xy - 5 - x2y + 2xy2 - 5xy + 3
A = ( -2x2y - x2y ) + ( xy2 + 2xy2 ) + ( xy - 5xy ) + ( -5 + 3 )
A = -3x2y + 3xy2 + ( -4xy ) + ( -2 )
b) x = -1, y = 1
Thay x = -1, y = 1 vào đa thức A ta được :
\(-3\left(-1\right)^2\cdot1^2+3\left(-1\right)\cdot1^2+\left(-4\left(-1\right)\cdot1\right)+\left(-2\right)\)
\(=-3\cdot1+\left(-3\right)\cdot1+\left(4\cdot1\right)+\left(-2\right)\)
\(=\left(-3\right)+\left(-3\right)+4+\left(-2\right)\)
\(=-6+4+\left(-2\right)\)
\(=-4\)
Vậy A = -4 khi x = -1 , y = 1
a, (3x2-2xy+y2) + (x2-xy+2y2) - (4x2-y2)
= 3x2-2xy+y2+x2-xy+2y2-4x2+y2
= 4y2-3xy
b, = x2-y2+2xy-x2-xy-2y2+4xy-1
= -3y2+5xy
c, M=5xy+x2-7y2+(2xy-4y)2 = 5xy+x2-7y2+4x2y2-16xy2+16y2 = 5xy+x2+9y2+4x2y2-16xy2
a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{8}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)
\(=\dfrac{-1}{8}+\dfrac{1}{12}-\dfrac{1}{18}=-\dfrac{7}{72}\)
b: \(B=\left(-1\cdot3\right)^2+\left(-1\right)\cdot3-1+27\)
\(=9-3-1+27\)
=36-4=32
c: \(C=-0.7xy^2-2x^2y-4.5xy\)
\(=-0.7\cdot\dfrac{1}{2}\cdot1-2\cdot0.25\cdot\left(-1\right)-4.5\cdot0.5\cdot\left(-1\right)\)
\(=\dfrac{-7}{20}+\dfrac{1}{2}+\dfrac{9}{2}\cdot\dfrac{1}{2}\)
\(=\dfrac{12}{5}\)
C= x2 y - \(\dfrac{1}{2}\)xy2 + \(\dfrac{1}{3}\)x2y +\(\dfrac{2}{3}\)xy2 + 1
C=(x2y + \(\dfrac{1}{3}\)x2y )+( - \(\dfrac{1}{2}\)xy2 +\(\dfrac{2}{3}\)xy2)+ 1
C=\(\dfrac{4}{3}\)x2y +\(\dfrac{1}{6}\)xy2+1
=>Bặc: 3
D= xy2z + 3xyz2 - \(\dfrac{1}{5}\)xy2z - \(\dfrac{1}{3}\)xyz2 - 2
D=(xy2z - \(\dfrac{1}{5}\)xy2z )+( 3xyz2 - \(\dfrac{1}{3}\)xyz2) - 2
D=\(\dfrac{4}{5}\)xy2z +\(\dfrac{8}{3}\)xyz2 - 2
=> Bậc :4
E = 3xy5 - x2y + 7xy - 3xy5 + 3x2y - \(\dfrac{1}{2}\)xy + 1
E=(3xy5- 3xy5) + (- x2y + 3x2y) + (7xy - \(\dfrac{1}{2}\)xy)+ 1
E= 2x2y + \(\dfrac{13}{2}\)xy + 1
=> Bậc: 3
K = 5x3 - 4x + 7x2 - 6x3 + 4x + 1
K= (5x3 - 6x3 ) + (- 4x + 4x) +1
K= -1x3 + 1
=>Bậc: 3
F = 12x3y2 - \(\dfrac{3}{7}\)x4y2 + 2xy3 - x3y2 + x4y2 - xy3 - 5
F=( 12x3y2 - x3y2) + (- \(\dfrac{3}{7}\)x4y2 + x4y2) + (2xy3 - xy3) -5
F=11x3y2 + \(\dfrac{4}{7}\)x4y2 + xy3 - 5
=> Bậc :6
CHÚC BN HỌC TỐT ^-^
Bài 1: tìm nghiệm của đa thức.
a) A(x) =\(\frac{1}{3}\)x + 1
⇔ 0 = \(\frac{1}{3}x+1\)
⇔ 0 = x + 3
⇔ -x = 3
⇔ x = -3
b) B(x) = \(\frac{2}{3}\)x +\(\frac{1}{5}\)
⇔ 0 = \(\frac{2}{3}x+\frac{1}{5}\)
⇔ 0 = 10x + 3
⇔ -10x = 3
⇔ x = \(-\frac{3}{10}\)
c) C(x) = (4x-1) . (2x+3)
⇔ 0 = (4x - 1).(2x + 3)
⇔ (4x -1).(2x +3) = 0
⇔ \(\left[{}\begin{matrix}4x-1=0\\2x+3=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\frac{1}{4}\\x=-\frac{3}{2}\end{matrix}\right.\)
d) D(x) = (-5x+2).(x-7)
⇔ 0 = (-5x +2).(x - 7)
⇔ (-5x +2).( x -7) = 0
⇔ \(\left[{}\begin{matrix}-5x+2=0\\x-7=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\frac{2}{5}\\x=7\end{matrix}\right.\)
e) E(x) = -4x2+8x
⇔ 0 = -4x2 + 8x
⇔ -4x2 + 8x = 0
⇔ -4x.(x-2) = 0
⇔ x.(x-2) = 0
⇔ \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Bài 6; tìm đa thức A biết :
a) A + 7x2y - 5xy2 -xy = x2y +8xy2 -5xy
A = x2y + 8xy2 -5xy -7x2y + 5xy2 + xy
A= -6x2y + 13xy2 - 4xy
b) 4x2 -7x +1- A = 3x2 -7x -1
⇔ 4x2 + 1 - A = 3x2 -1
-A= 3x2 -1 -4x2 -1
-A= -x2 - 2
A= x2 + 2
\(A+7x^2y-5xy^2-xy=x^2y+8xy^2-5xy\)
\(\Rightarrow A=\left(x^2y+8xy^2-5xy\right)-\left(7x^2y-5xy^2-xy\right)\)
\(=x^2y+8xy^2-5xy-7x^2y+5xy^2+xy\) \(=\left(x^2y-7x^2y\right)+\left(8xy^2+5xy^2\right)+\left(-5xy+xy\right)\)
\(=-6x^2y+13xy^2-4xy\)
A = (x\(^2\)y + 8xy\(^2\)- 5xy) - (7x\(^2\)y - 5xy\(^2\)- xy)
A = x\(^2\)y + 8xy\(^2\)- 5xy - 7x\(^2\)y + 5xy\(^2\)+ xy
A = (x\(^2\)y -7x\(^2\)y) + (8xy\(^2\)+ 5xy\(^2\)) + (-5xy +xy)
A = -6x\(^2\)y + 13xy\(^2\)- 4xy