Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) \(\left(1-cos_x\right)\left(1+cos_x\right)-sin^2_x=1-cos^2_x-sin^2_x=1-\left(cos^2_x+sin^2_x\right)=1-1=0\)
b) \(tan^2_x\left(2.cos^2_x+sin^2_x-1\right)+cos^2_x=tan^2_x\left(cos^2_x+sin^2_x+cos^2_x-1\right)+cos^2_x=tan^2_x\left(1-1+cos^2_x\right)+cos^2_x=tan^2_x.cos^2_x+cos^2_x=\left(tan_x.cos_x\right)^2+cos^2_x=sin^2_x+cos^2_x=1\)2. Ta có \(9>5\Leftrightarrow\sqrt{9}>\sqrt{5}\Leftrightarrow3>\sqrt{5}\Leftrightarrow3-\sqrt{5}>0\)
Vậy \(3-\sqrt{5}>0\)
a) Đường thẳng ax + by = c đi qua M (0 ; -1) và N (3 ; 0) nên tọa độ của M và N nghiệm đúng phương trình đường thẳng
Điểm M: (a.0 + b(- 1) = c ⇔ - b = c
Điểm N: (a.3 + b.0 = c ⇔ 3a = c ⇔ a = c/3
Do đó đường thẳng phải tìm là (c/3)x - cy = c. Vì đường thẳng MN được xác định nên a, b không đồng thời bằng 0, suy ra (c ≠ 0
Vậy ta có phương trình đường thẳng là x – 3y = 3
b) Đường thẳng ax + by = c đi qua M (0 ; 3) và N (-1 ; 0) nên tọa độ của M và N nghiệm đúng phương trình đường thẳng
Điểm M: (a.0 + b.3 = c ⇔ b = {c/3}
Điểm N: (a(- 1) + b.0 ⇔ - a = c
Do đó đường thẳng phải tìm là: ( - cx + (c/3)y = c Vì đường thẳng MN được xác định nên a, b không đồng thời bằng 0, suy ra (c ≠ 0
Vậy ta có phương trình đường thẳng là: -3x + y = 3.
\(\frac{cos^2x\left(1+cot^2x\right)}{sin^2x\left(1+tan^2x\right)}=\frac{tan^2x\left(1+cot^2x\right)}{1+tan^2x}=\frac{tan^2x+tan^2x.cot^2x}{1+tan^2x}=\frac{1+tan^2x}{1+tan^2x}=1\)
Câu b ko rút gọn được, bạn coi lại đề
\(x^2sin^2a+y^2cos^2a-2xy.sina.cosa+x^2cos^2a+y^2sin^2a+2xy.sinx.cosa\)
\(=x^2\left(sin^2a+cos^2a\right)+y^2\left(cos^2a+sin^2a\right)=x^2+y^2\)
Đặt x^2 = t ( t >= 0 )
\(t^2-2\left(m-1\right)t+m^2-3=0\)
\(\Delta'=\left(m-1\right)^2-\left(m^2-3\right)=-2m+1+3=-2m+4\)
Để pt có 2 nghiệm pb \(\Delta'>0\Leftrightarrow-2m+4>0\Leftrightarrow m< 2\)
Để pt có 2 nghiệm kép \(\Delta'=0\Leftrightarrow-2m+4=0\Leftrightarrow m=2\)
Vậy với \(m\le2\)thì pt trên luôn có 2 nghiệm