Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5x(x - y) - y(5x - y)
A = 5x2 - 5xy - 5xy + y2
A = 5x2 - 10xy + y2 (1)
Thay x = -1; y = 3 vào (1), ta có:
5.(-1)2 - 10.(-1).3 + 32 = 44
B = 4y(x2 - 3xy + 3y2) - 2xy(2x - 6y - 3)
B = 4x2y - 12x2 + 12y3 - 4x2y + 12xy2 + 6xy
B = 12y3 + 6xy (1)
Thay x = 5; y = -1 vào (1), ta có:
12.(-1)3 + 6.5.(-1) = -42
C = 5x2(x - y2) + 3x(xy2 - y) - 5x3
C = 5x3 - 5x2y2 + 3x2y2 - 3xy - 5x3
C = -2x2y2 - 3xy (1)
Thay x = -2; y = -5 vào (1), ta có:
-2.(-2)2.(-5)2 - 3.(-2).(-5) = -230
D = 6x2(y2 - xy + 2x2y) - 3xy(2xy - x2 + 4x3)
D = 6x2y2 - 6x3y + 12x4y - 6x2y2 + 3x3y - 12x4y
D = -3x3y (1)
Thay x = 11; y = -1 vào (1), ta có:
-3.113.(-1) = 3993
Tìm đa thức M biết :
a, M +5 (5x2 - 2xy) = 6x2 +9xy - y2
M + 5. 5x2 - 5. 2xy = 6x2 + 9xy - y2
M + 25x2 - 10xy = 6x2 + 9xy - y2
M = 6x2 + 9xy - y2 + 10xy - 25x2
M = ( 6x2 - 25x2 ) + ( 9xy + 10xy ) - y2
M = -19x2 + 19xy - y2
b, M - ( 3xy - 4y2 ) = x2 - 7xy + 8xy
M - 3xy + 4y2 = x2 - 15xy
M = x2 - 15xy - 4y2 + 3xy
M = x2 + ( 15xy + 3xy ) - 4y2
M = x2 + 18xy - 4y2
c, (25 . x2y - 13xy2+ y3 ) - M = 11x2y - 2y3
25x2y - 13xy2+ y3 - M = 11x2y - 2y3
M = 25x2y - 13xy2+ y3 - 11x2y - 2y3
M = ( 25x2y - 11x2y ) + ( y3 - 2y3 ) - 13xy2
M = 14x2y - y3 - 13xy2
d, M + (5x2 - 2xy )= 6x2 + 9xy -y2
M + 5x2 - 2xy = 6x2 + 9xy -y2
M = 6x2 + 9xy -y2 + 2xy - 5x2
M = ( 6x2 - 5x2 ) + ( 9xy + 2xy ) - y2
M = x2 + 11xy - y2
a) \(P=4x^3y-5x^2y^2+3xy^3-6x^3y+7x^2y^2-12xy^3+1\)
\(P=\left(4x^3y-6x^3y\right)+\left(-5x^2y^2+7x^2y^2\right)+\left(3xy^3-12xy^3\right)+1\)
\(P=-2x^3y+2x^2y^2-9xy^3+1\)
Tại x=2 ; y = 1/2 thay vào biểu thức P có :
\(P=-2.2^3\dfrac{1}{2}+2.2^2.\left(\dfrac{1}{2}\right)^2-9.2.\left(\dfrac{1}{2}\right)^3+1\)
\(P=-7\dfrac{1}{4}\)
b) \(Q=5x^3y-4xy^3-5x^3y+1\)
\(Q=\left(5x^3y-5x^3y\right)-4xy^3+1\)
\(Q=-4xy^3+1\)
Tại x=1, y= 1 thay vào biểu thức Q ta có :
\(Q=-4.1.1^3+1\)
\(Q=-3\)
c) \(M=\dfrac{-4}{5}uv^2+3u^2v^3-\dfrac{1}{2}v^2+\dfrac{3}{5}uv^2\)
\(M=\left(\dfrac{-4}{5}uv^2+\dfrac{3}{5}uv^2\right)+3u^2v^3-\dfrac{1}{2}v^2\)
\(M=\dfrac{-1}{5}uv^2+3u^2v^3-\dfrac{1}{2}v^2\)
Tại u=3 ; v=-1 thay vào biểu thức M ta có :
\(M=\dfrac{-1}{5}.3.\left(-1\right)^2+3.3^2.\left(-1\right)^3-\dfrac{1}{2}.\left(-1\right)^2\)
\(M=-28\dfrac{1}{10}\)
Ta thay các đơn thức trong M có biễn x + y
\(M=2x+2y+3xy\left(x+y\right)+5x^3y^2+5x^2y^3+2\)
\(\Rightarrow M=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)+2\)
Có \(x+y=0\) theo đề bài nên ta suy ra
\(2\left(x+y\right)=3xy\left(x+y\right)=5x^2y^2\left(x+y\right)=0\)
\(\Rightarrow M=0+0+0+2=2\) Vậy M = 2