Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M=2+22+23+24+....+22017+22018
=> 2M=2(2+22+23+24+....+22017+22018)
=> 2M=22+23+24+25+....+22018+22019
=> 2M-M=22019-2
b) M=2+22+23+24+....+22017+21018
=> M=(2+22)+(23+24)+....+(22017+22018)
=> M=2(1+2)+23(1+2)+....+22017(1+2)
=> M=2.3+23.3+....+22017.3
=> M=3(2+23+.....+22017)
=> M chia hết cho 3
a, M= 2 + 2^2 + 2^3 +....+ 2^2018
2M= 2^2 + 2^3 + 2^4 +...+ 2^2019
2M-M= ( 2^2 + 2^3 + 2^4 +....+ 2^2019) - ( 2+ 2^2 + 2^3 +...+ 2^2018)
M= 2^2019 - 2
b, Tổng trên có 2018 số, nhóm mỗi nhóm 2 số, ta có:
M= (2 + 2^2) + (2^3 + 2^4) +...+ (2^2017 + 2^2018)
M= 2(1+2) + 2^3(1+2) +...+ 2^2017(1+2)
M= 2. 3 + 2^3.3 +...+ 2^2017.3
M= 3( 2 + 2^3 +...+ 2^2017) chia hết cho 3
Vậy M chia hết cho 3
\(M=\left(2018+2018^2\right)+\left(2018^3+2018^4\right)+...+\left(2018^{2017}+2018^{2018}\right)\)
\(=2018\left(1+2018\right)+2018^3\left(1+2018\right)+...+2018^{2017}\left(1+2018\right)\)
\(=2018.2019+2018^3.2019+...+2018^{2017}.2019\)
\(=2019\left(2018+2018^3+...+2018^{2017}\right)⋮2019\)
b/ \(M=2018+2018^2+...+2018^{2018}\)
\(2018M=2018^2+2018^3+...+2018^{2018}+2018^{2019}\)
Lấy dưới trừ trên:
\(2018M-M=-2018+2018^{2019}\)
\(\Rightarrow2017M=2018^{2019}-2018\)
\(\Rightarrow M=\frac{2018^{2019}-2018}{2017}=\frac{2018^{2019}}{2017}-\frac{2017+1}{2017}=\frac{2018^{2019}}{2017}-1-\frac{1}{2017}\)
\(\Rightarrow M=N-\frac{1}{2017}\Rightarrow M< N\)
2S=2.(22 + 23 + 24+ ... + 22017 + 22018)
2S=23 + 24+ ... + 22017 + 22018+22019
S=23 + 24+ ... + 22017 + 22018+22019-22 + 23 + 24+ ... + 22017 + 22018
S=22019-22
Vì đề con viết thiếu nên cô đã sửa nhé.
Ta có \(S=1-2+2^2-2^3+...-2^{2017}\)
\(\Rightarrow4S=2^2.S=2^2\left(1-2+2^2-2^3+...-2^{2017}\right)\)
\(\Rightarrow4S=2^2-2^3+2^4-2^5+...-2^{2017}+2^{2018}-2^{2019}\)
\(\Rightarrow4S=S+1+2^{2018}-2^{2019}\)
\(\Rightarrow3S=1+2^{2018}-2^{2019}\)
\(\Rightarrow M=3S-2^{2018}=1-2^{2019}\)
Tính tổng sao nếu vậy thì
MÌnh đặt tổng này là A nhé
A = 3^1+3^2+....+3^2018
3A = 3^2+3^3+...+3^2019
3A - A = 2A = 3^2019 - 3^1 trên 2 =A
**** nhé ! , Cảm ơn bạn .
=>2M=2^2+2^3+2^4+2^5+........+2^2018+2^2019
M=2M-M
=>M=(2^2+2^3+.........+2^2019)-(2+2^2+.............+2^2018)
=>M=2^2019-2
\(M=2+2^2+2^3+2^4+...+2^{2017}+2^{2018}\) (1)
\(\Rightarrow2M=2\left(2+2^2+2^3+2^4+...2^{2017}+2^{2018}\right)\)
\(\Rightarrow2M=2^2+2^3+2^4+2^5...+2^{2019}\) (2)
Lấy (2) - (1) , ta có :
\(2M=2^2+2^3+2^4+...+2^{2019}-M=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow M=2^{2019}-2\)