K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

ta có: M = 1/3 - 2/3^2 + 3/3^3 - 4/3^4 +......+ 99/3^99 - 100/3^100

=> 3.M = 1 - 2/3 + 3/3^2 - 4/3^3 +.......+ 99/3^98 - 100/3^99

=> 3M + M = ( 1 - 2/3 + 3/3^2 - 4/3^3 +.........+ 99/3^98 - 100/3^99 ) + ( 1/3 - 2/3^2 + 3/3^3 - 4/3^4 +....+ 99/3^99 - 100/3^100 )

=> 4.M = 1- 1/3 + 1/3^2 - 1/3^3 +........+ 1/3^98 - 1/3^99 - 100/3^100

=> 12.M = 3 - 1 + 1/3 - 1/3^2 +.......+ 1/3^97 - 1/3^98 - 1/3^99

=> 12M + 4M = ( 3 - 1 + 1/3 - 1/3^2 +......+ 1/3^97 - 1/3^98 - 1/3^99 ) + ( 1 - 1/3 + 1/3^2 - 1/3^3 +.......+ 1/3^99 - 1/3^100 )

=> 16M = 3 - 101/3^99 - 100/3^100

vù 16M < 3

=> M < 3/16

vậy M < 3/16

tk cho mk nha,mk bị âm rùi

15 tháng 6 2019

Ta có: B=1/3+2/32+3/33+...+99/399+100/3100

          3B=1+1/3+2/32+3/33+...+99/399

         3B-B=(1+1/3+2/32+3/33+...+99/399)-(1/3+2/32+3/33+4/34+..+99/399+100/3100)

Đặt A=1/3+1/32+1/33+..+1/399

    3A=1+1/3+1/32+..+1/399

2A=1-1/399=>A=1-1/399/2

Thay vào 2B...........................

Ta sẽ ra B<3/12

-Chúc hk tốt-

    

9 tháng 5 2016

A=1/3 - 2/3^2+3/3^3 - 4/3^4+ ... - 100/3^100 
=>3A=1 -2/3 +3/3^2 - 4/3^3+ ... - 100/3^99 
=>4A=A+3A=1-1/3+1/3^2-1/3^3+...-1/3^99 - 100/3^100 
=>12A=3.4A=3-1+1/3-1/3^2+...-1/3^98 - 100/3^99 

=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1... 
<=>16A=3-101/3^99-100/3^100 
<=>A=3/16-(101/3^99+100/3^100)/16 < 3/16 
Suy ra A<3/16

10 tháng 7 2017

khó hiểu quá!!!!!!!!!!!!!!!!!!!

23 tháng 3 2020

1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 

= 1 - 1/2 + 1/2 - 1/4 +1/4 - 1/8+ 1/8- 1/16 + 1/16 - 1/32 + 1/32 - 1/64

= 1- 1/64

= 63/64

............

Sao mk thấy 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64  > 1/3 chứ ko phải < 1/3 bn ạ

18 tháng 5 2017

Ta có:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)

Mà \(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{99}{100}\)