K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 giờ trước (16:49)

tht là lp 7 kh v


6 giờ trước (16:49)

📘 1. Nhị thức Newton là gì?

Nhị thức Newton là một công thức dùng để khai triển lũy thừa của một tổng dạng \(\left(\right. a + b \left.\right)^{n}\), trong đó \(n\) là số tự nhiên.


Công thức nhị thức Newton:

\(\left(\right. a + b \left.\right)^{n} = \sum_{k = 0}^{n} \left(\right. \frac{n}{k} \left.\right) a^{n - k} b^{k}\)

Trong đó:

  • \(\left(\right. \frac{n}{k} \left.\right)\)hệ số nhị thức, đọc là "n chọn k", được tính bằng:

\(\left(\right. \frac{n}{k} \left.\right) = \frac{n !}{k ! \left(\right. n - k \left.\right) !}\)

  • \(a , b\) là các biểu thức hoặc số thực.
  • \(n\) là số mũ nguyên không âm (0, 1, 2, ...)

🎯 Ví dụ:

Khai triển \(\left(\right. a + b \left.\right)^{3}\) bằng nhị thức Newton:

\(\left(\right. a + b \left.\right)^{3} = \left(\right. \frac{3}{0} \left.\right) a^{3} b^{0} + \left(\right. \frac{3}{1} \left.\right) a^{2} b^{1} + \left(\right. \frac{3}{2} \left.\right) a^{1} b^{2} + \left(\right. \frac{3}{3} \left.\right) a^{0} b^{3}\) \(= 1 a^{3} + 3 a^{2} b + 3 a b^{2} + 1 b^{3} = a^{3} + 3 a^{2} b + 3 a b^{2} + b^{3}\)


🟨 2. Tam giác Pascal là gì?

Tam giác Pascal là một bảng sắp xếp các hệ số nhị thức \(\left(\right. \frac{n}{k} \left.\right)\) theo hình tam giác. Mỗi số trong tam giác là tổng của hai số phía trên nó.


🔻 Cấu trúc của tam giác Pascal:



        1               ← hàng 0
       1 1             ← hàng 1
      1 2 1            ← hàng 2
     1 3 3 1           ← hàng 3
    1 4 6 4 1          ← hàng 4
   1 5 10 10 5 1       ← hàng 5
  ...
  • Mỗi hàng ứng với khai triển của \(\left(\right. a + b \left.\right)^{n}\)
  • Hệ số của \(\left(\right. a + b \left.\right)^{n}\) là các số ở hàng thứ \(n\) của tam giác Pascal.

🎯 Ví dụ ứng dụng:

Dùng tam giác Pascal để khai triển \(\left(\right. x + y \left.\right)^{4}\):

→ Hàng thứ 4 là: 1 4 6 4 1

\(\left(\right. x + y \left.\right)^{4} = 1 x^{4} + 4 x^{3} y + 6 x^{2} y^{2} + 4 x y^{3} + 1 y^{4}\)


Tóm tắt dễ nhớ:

Nội dung

Nhị thức Newton

Tam giác Pascal

Khái niệm

Khai triển

\(\left(\right. a + b \left.\right)^{n}\)(a+b)n(a + b)^n(a+b)n

Bảng hệ số

\(\left(\right. \frac{n}{k} \left.\right)\)(nk)\binom{n}{k}(kn​)

Dạng tổng quát

\(\left(\right. a + b \left.\right)^{n} = \sum_{k = 0}^{n} \left(\right. \frac{n}{k} \left.\right) a^{n - k} b^{k}\)(a+b)n=∑k=0n(nk)an−kbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k}b^k(a+b)n=∑k=0n​(kn​)an−kbk

Các hệ số nhị thức được sắp xếp theo hình tam giác

Ứng dụng

Giải toán khai triển, tổ hợp, tính nhanh

Tìm hệ số nhị thức nhanh chóng, ứng dụng trong nhị thức Newton

xin 1 tick

NM
17 tháng 1 2022

ta cso : 

undefined

1 tháng 1 2016

xin lỗi em đây mới học lớp 6 vô chtt nhé

Bài 1:

a: Oz là phân giác của góc xOy

=>\(\hat{xOz}=\hat{yOz}=\frac12\cdot\hat{xOy}=\frac12\cdot60^0=30^0\)

b: ta có: \(\hat{xOz}=\hat{z^{\prime}Ot}\) (hai góc đối đỉnh)

\(\hat{xOz}=30^0\)

nên \(\hat{z^{\prime}Ot}=30^0\)

Bài 2:

a: \(\hat{xOz}+\hat{zOy}=180^0\) (hai góc kề bù)

=>\(\hat{zOy}=180^0-70^0=110^0\)

Đây nha!
image

Cre : Hoidap247

#Ri ( acc bạn )

14 tháng 7 2021

Bạn tham khảo nhé !

httpsi.imgur.comtM6Bvqy.jpg

Nguồn : h..vn

_ Hok tốt

Link tham khảo : https://h.vn/cau-hoi/cho-tam-giac-nhon-abc-ve-phia-ngoai-tam-giac-abc-cac-tam-giac-deu-abd-va-ace-goi-m-la-giao-diem-dc-va-be-chung-minha-tam-giac-abe-tam-giac-adcb.689423798490

4 tháng 9 2019

Diện tích S của mảnh đất là:

\(S=\frac{1}{2}.3.h_1=\frac{1}{2}.4.h_2=\frac{1}{2}.6.h_3\)

=> \(3h_1=4.h_2=6.h_3\)

=> \(\frac{h_1}{\frac{1}{3}}=\frac{h_2}{\frac{1}{4}}=\frac{h_3}{\frac{1}{6}}=\frac{h_1-h_2+h_3}{\frac{1}{3}-\frac{1}{4}+\frac{1}{6}}=\frac{25}{\frac{1}{4}}=25.4=100\)

=> \(h_1=\frac{1}{3}.100=\frac{100}{3}\left(m\right)\)

=> \(S=\frac{1}{2}.3.h_1=\frac{1}{2}.3.\frac{100}{3}=50\left(m^2\right)\)

12 tháng 4 2020

Nếu x=0x=0:

3x2+2x−13x2+2x−1=3.02+2.0−1=−1=3.02+2.0−1=−1

Nếu x=−1x=−1:

3x2+2x−13x2+2x−1=3(−1)2+2(−1)−1=3−2−1=0=3(−1)2+2(−1)−1=3−2−1=0

Nếu x=13x=13:

3x2+2x−13x2+2x−1=3(13)2+2.13−1=13+23−1=0

11 tháng 4 2020

Nếu \(x=0\):

\(3x^2+2x-1\)\(=3.0^2+2.0-1=-1\)

Nếu \(x=-1\):

\(3x^2+2x-1\)\(=3\left(-1\right)^2+2\left(-1\right)-1=3-2-1=0\)

Nếu \(x=\frac{1}{3}\):

\(3x^2+2x-1\)\(=3\left(\frac{1}{3}\right)^2+2.\frac{1}{3}-1=\frac{1}{3}+\frac{2}{3}-1=0\)

19 tháng 3 2020

A B C K H I

a) Xét \(\Delta ABH\)\(\Delta KBH\) có:

\(AB=KB\left(gt\right)\)

BH là cạnh chung

\(AH=HK\) ( H là trung điểm của AK )

=> \(\Delta ABH=\Delta KBH\left(c.c.c\right)\)

Chúc bạn may mắn !