Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\left|x\right|+\left|x-2\right|=\left|x\right|+\left|2-x\right|\ge\left|x+2-x\right|=2\)
Để \(\left|x\right|+\left|x-2\right|=2\) thì \(x\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\2-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\le2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}0\le x\le2\left(TM\right)\\0\ge x\ge2\left(loai\right)\end{matrix}\right.\)
Vậy \(0\le x\le2\)
phần đầu đúng ko?
* Ta đi CM tổng quát: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) (1)
Có: \(\left\{{}\begin{matrix}\left|a\right|\ge a;\left|a\right|\ge-a\\\left|b\right|\ge b;\left|b\right|\ge-b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|a\right|+\left|b\right|\ge a+b\\\left|a\right|+\left|b\right|\ge-\left(a+b\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|a\right|+\left|b\right|\ge a+b\\-\left(\left|a\right|+\left|b\right|\right)\le a+b\end{matrix}\right.\)
\(\Rightarrow-\left(\left|a\right|+\left|b\right|\right)\le a+b\le\left|a\right|+\left|b\right|\)
\(\Rightarrow\left|a\right|+\left|b\right|\ge\left|a+b\right|\left(ĐPCM\right)\)
Có: \(\left|x\right|+\left|x-2\right|=\left|x\right|+\left|2-x\right|\) (2)
Áp dụng t/c (1) vào (2), ta đc: \(\left|x\right|+\left|2-x\right|\ge\left|x+2-x\right|=\left|2\right|=2\)
Ta có
T=/x-1/+/x-2/+/x-3/+/x-4/
=/x-1/+/2-x/+/x-3/+/4-x/
Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/
=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2
nhớ tick mình nha
TH1: x<0
Pt sẽ là -x-x+2=2
=>-2x=0
=>x=0(loại)
TH2: 0<=x<2
Pt sẽ là x+2-x=2
=>2=2(luôn đúng)
TH3: x>=2
Pt sẽ là x+x-2=2
=>2x=4
hay x=2(nhận)