Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
T=/x-1/+/x-2/+/x-3/+/x-4/
=/x-1/+/2-x/+/x-3/+/4-x/
Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/
=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2
nhớ tick mình nha
ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)
Áp dụng tính chât dấu giá trị tuyệt đối ta có
\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)
mà \(\left|x-2\right|\ge0\)
\(\Rightarrow P\ge8\)
dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)
<=> x=2
vậy Pmin =8 <=> x=2
Vì \(\left|x-2\right|\ge0\)
\(\left|x-3\right|\ge0\)
\(\left|x-6\right|\ge0\)
Do đó:\(\left|x-2\right|+\left|x-3\right|+\left|x-6\right|\ge0\)
Dấu = xảy ra khi \(\hept{\begin{cases}x-2=0\\x-3=0\\x-6=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\x=3\\x=6\end{cases}}\)
Vậy Min F(x)=0 khi x=2;3;6
f(x)=|x-2|+|x-3|+|x-6| >= |2-x+x-6|=|-4|=4 (bđt |a|+|b| >= |a+b|)
dấu "=" xảy ra <=> (2-x)(x-6) >= 0 <=>2 <=x <= 6
\(a)\left|2x-5\right|=4\)\(\Rightarrow2x-5=\pm4\)
\(Với\)\(2x-5=4\Rightarrow2x=9\Rightarrow x=\frac{9}{2}\)
\(Với\)\(2x-5=-4\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
\(Vậy\)\(x=\frac{9}{2};x=\frac{1}{2}\)
\(b)\left|2x-3\right|-\left|3x+2\right|=0\)
\(Vì\)\(\left|2x-3\right|\ge0;\left|3x+2\right|\ge0\)
\(\Rightarrow\hept{\begin{cases}2x-3=0\\3x+2=0\end{cases}\Rightarrow\hept{\begin{cases}2x=3\\3x=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\x=\frac{-2}{3}\end{cases}}}\)
\(Vậy\)\(x=\frac{3}{2};x=\frac{-2}{3}\)
a, \(\left|2x-5\right|=4\)
\(\Rightarrow\orbr{\begin{cases}2x-5=4\\2x-5=-4\end{cases}\Rightarrow}\orbr{\begin{cases}2x=9\\2x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{9}{2}\\x=\frac{1}{2}\end{cases}}\)
b, \(\left|2x-3\right|-\left|3x+2\right|=0\)
\(\Rightarrow\left|2x-3\right|=\left|3x+2\right|\)
\(\Rightarrow\orbr{\begin{cases}2x-3=3x+2\\2x-3=-3x-2\end{cases}\Rightarrow}\orbr{\begin{cases}-x=5\\5x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-5\\x=\frac{1}{5}\end{cases}}\)
c, \(\left|x+3\right|-\left|3x+2\right|=x+2\)
Ta có: x + 3 = 0 => x = -3
3x + 2 = 0 => x = -2/3
Lập bảng xét dấu:
x x + 3 3x + 2 -2 3 -3 0 0 - + + - - +
Với x < -3
Ta có: -x - 3 + 3x + 2 = x + 2
<=> 2x - 1 = x + 2
<=> x = 3 ( ko t/mãn )
Với -3 ≤ x < -2/3
Ta có: x + 3 + 3x + 2 = x + 2
<=> 4x + 5 = x + 2
<=> 3x = -3
<=> x = -1 ( t/mãn )
Với -2/3 ≤ x
Ta có: x + 3 - 3x - 2 = x + 2
<=> -2x + 1 = x + 2
<=> -3x = 1
<=> x = -1/3 ( t/mãn )
Vậy....
d, \(\left||x-1|-5\right|=x+5\)
Đk: x + 5 ≥ 0 => x ≥ -5
\(\Rightarrow\orbr{\begin{cases}\left|x-1\right|-5=x+5\\\left|x-1\right|-5=-x-5\end{cases}\Rightarrow\orbr{\begin{cases}\left|x-1\right|=x+25\\\left|x-1\right|=-x\left(Loai\right)\end{cases}}}\)
Giải \(\left|x-1\right|=x+25\)
\(\Rightarrow\orbr{\begin{cases}x-1=-x-25\\x-1=x+25\end{cases}\Rightarrow\orbr{\begin{cases}2x=-24\\0x=26\left(Loai\right)\end{cases}\Rightarrow x}=-12}\)( ko t/mãn )
Vậy x \(\in\varnothing\)
a) +) Nếu x \(\ge\) 3 => |x - 2| = x - 2; |x - 3| = x - 3
=> P = x - 2 + x - 3 = 2x - 5 \(\ge\) 2.3 - 5 = 1
+) Nếu 2 < x < 3 => |x - 2| = x - 2 và |x - 3| = 3 - x
=> P = x - 2 + 3 - x = 1
+) Nếu x \(\le\) 2 => |x - 2| = 2 - x; |x - 3| = 3 - x
=> P = 2 - x + 3 - x = 5 - 2x \(\ge\) 5- 2.2 = 1
Kết hợp 3 trường hợp => P nhỏ nhất = 1 khi x = 2 hoặc x = 3
b) Q = x2 + 2.x. 3 +9 - 9 - 11 = (x + 3)2 - 20 \(\ge\) 0 - 20 = -20 với mọi x
=> Q nhỏ nhất bằng -20 khi x+ 3 = 0 => x = -3
không chắc là đúng đâu